You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
5.3 KiB
194 lines
5.3 KiB
3 years ago
|
/*
|
||
|
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||
|
* not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
/* ----------------------------------------------------------------------
|
||
|
* Project: CMSIS NN Library
|
||
|
* Title: arm_fully_connected_q15.c
|
||
|
* Description: Q15 basic fully-connected layer function
|
||
|
*
|
||
|
* $Date: 17. January 2018
|
||
|
* $Revision: V.1.0.0
|
||
|
*
|
||
|
* Target Processor: Cortex-M cores
|
||
|
*
|
||
|
* -------------------------------------------------------------------- */
|
||
|
|
||
|
#include "arm_math.h"
|
||
|
#include "arm_nnfunctions.h"
|
||
|
|
||
|
/**
|
||
|
* @ingroup groupNN
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @addtogroup FC
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Q15 opt fully-connected layer function
|
||
|
* @param[in] pV pointer to input vector
|
||
|
* @param[in] pM pointer to matrix weights
|
||
|
* @param[in] dim_vec length of the vector
|
||
|
* @param[in] num_of_rows number of rows in weight matrix
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in,out] pOut pointer to output vector
|
||
|
* @param[in,out] vec_buffer pointer to buffer space for input
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
*
|
||
|
* @details
|
||
|
*
|
||
|
* <b>Buffer size:</b>
|
||
|
*
|
||
|
* vec_buffer size: 0
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
arm_status
|
||
|
arm_fully_connected_q15(const q15_t * pV,
|
||
|
const q15_t * pM,
|
||
|
const uint16_t dim_vec,
|
||
|
const uint16_t num_of_rows,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
const q15_t * bias,
|
||
|
q15_t * pOut,
|
||
|
q15_t * vec_buffer)
|
||
|
{
|
||
|
|
||
|
#if defined (ARM_MATH_DSP)
|
||
|
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
||
|
|
||
|
const q15_t *pB = pM;
|
||
|
const q15_t *pB2 = pB + dim_vec;
|
||
|
q15_t *pO = pOut;
|
||
|
const q15_t *pA;
|
||
|
const q15_t *pBias = bias;
|
||
|
uint16_t rowCnt = num_of_rows >> 1;
|
||
|
|
||
|
/* this loop loops over different output */
|
||
|
while (rowCnt) {
|
||
|
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||
|
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||
|
|
||
|
uint16_t colCnt = dim_vec >> 2;
|
||
|
|
||
|
pA = pV;
|
||
|
pB2 = pB + dim_vec;
|
||
|
|
||
|
while (colCnt)
|
||
|
{
|
||
|
q31_t inV1, inM1, inM2;
|
||
|
inV1 = *__SIMD32(pA)++;
|
||
|
inM1 = *__SIMD32(pB)++;
|
||
|
sum = __SMLAD(inV1, inM1, sum);
|
||
|
inM2 = *__SIMD32(pB2)++;
|
||
|
sum2 = __SMLAD(inV1, inM2, sum2);
|
||
|
|
||
|
inV1 = *__SIMD32(pA)++;
|
||
|
inM1 = *__SIMD32(pB)++;
|
||
|
sum = __SMLAD(inV1, inM1, sum);
|
||
|
inM2 = *__SIMD32(pB2)++;
|
||
|
sum2 = __SMLAD(inV1, inM2, sum2);
|
||
|
|
||
|
colCnt--;
|
||
|
}
|
||
|
colCnt = dim_vec & 0x3;
|
||
|
while (colCnt)
|
||
|
{
|
||
|
q15_t inV = *pA++;
|
||
|
q15_t inM = *pB++;
|
||
|
q15_t inM2 = *pB2++;
|
||
|
|
||
|
sum += inV * inM;
|
||
|
sum2 += inV * inM2;
|
||
|
colCnt--;
|
||
|
} /* while over colCnt */
|
||
|
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
||
|
*pO++ = (q15_t) (__SSAT((sum2>> out_shift), 16));
|
||
|
|
||
|
/* adjust the pointers and counters */
|
||
|
pB = pB + dim_vec;
|
||
|
rowCnt --;
|
||
|
}
|
||
|
|
||
|
rowCnt = num_of_rows & 0x1;
|
||
|
|
||
|
while (rowCnt) {
|
||
|
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
||
|
|
||
|
uint16_t colCnt = dim_vec >> 2;
|
||
|
|
||
|
pA = pV;
|
||
|
|
||
|
while (colCnt) {
|
||
|
q31_t inV1, inM1;
|
||
|
inV1 = *__SIMD32(pA)++;
|
||
|
inM1 = *__SIMD32(pB)++;
|
||
|
sum = __SMLAD(inV1, inM1, sum);
|
||
|
|
||
|
inV1 = *__SIMD32(pA)++;
|
||
|
inM1 = *__SIMD32(pB)++;
|
||
|
sum = __SMLAD(inV1, inM1, sum);
|
||
|
|
||
|
colCnt--;
|
||
|
}
|
||
|
|
||
|
/* left-over of the vector */
|
||
|
colCnt = dim_vec & 0x3;
|
||
|
while(colCnt) {
|
||
|
q15_t inV = *pA++;
|
||
|
q15_t inM = *pB++;
|
||
|
|
||
|
sum += inV * inM;
|
||
|
|
||
|
colCnt--;
|
||
|
}
|
||
|
|
||
|
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
||
|
|
||
|
rowCnt --;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
int i, j;
|
||
|
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
||
|
for (i = 0; i < num_of_rows; i++)
|
||
|
{
|
||
|
int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
|
||
|
for (j = 0; j < dim_vec; j++)
|
||
|
{
|
||
|
ip_out += pV[j] * pM[i * dim_vec + j];
|
||
|
}
|
||
|
pOut[i] = (q15_t) __SSAT((ip_out >> out_shift), 16);
|
||
|
}
|
||
|
|
||
|
#endif /* ARM_MATH_DSP */
|
||
|
|
||
|
/* Return to application */
|
||
|
return (ARM_MATH_SUCCESS);
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @} end of FC group
|
||
|
*/
|