bluepill firmware that turns it into a USB-I2C multimaster gateway with a simple serial protocol.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

142 lines
3.7 KiB

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cmplx_mag_q15.c
* Description: Q15 complex magnitude
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_mag
* @{
*/
/**
* @brief Q15 complex magnitude
* @param *pSrc points to the complex input vector
* @param *pDst points to the real output vector
* @param numSamples number of complex samples in the input vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 2.14 format.
*/
void arm_cmplx_mag_q15(
q15_t * pSrc,
q15_t * pDst,
uint32_t numSamples)
{
q31_t acc0, acc1; /* Accumulators */
#if defined (ARM_MATH_DSP)
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
q31_t in1, in2, in3, in4;
q31_t acc2, acc3;
/*loop Unrolling */
blkCnt = numSamples >> 2U;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (blkCnt > 0U)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
in1 = *__SIMD32(pSrc)++;
in2 = *__SIMD32(pSrc)++;
in3 = *__SIMD32(pSrc)++;
in4 = *__SIMD32(pSrc)++;
acc0 = __SMUAD(in1, in1);
acc1 = __SMUAD(in2, in2);
acc2 = __SMUAD(in3, in3);
acc3 = __SMUAD(in4, in4);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) ((acc0) >> 17), pDst++);
arm_sqrt_q15((q15_t) ((acc1) >> 17), pDst++);
arm_sqrt_q15((q15_t) ((acc2) >> 17), pDst++);
arm_sqrt_q15((q15_t) ((acc3) >> 17), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4U;
while (blkCnt > 0U)
{
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
in1 = *__SIMD32(pSrc)++;
acc0 = __SMUAD(in1, in1);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (acc0 >> 17), pDst++);
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
q15_t real, imag; /* Temporary variables to hold input values */
while (numSamples > 0U)
{
/* out = sqrt(real * real + imag * imag) */
real = *pSrc++;
imag = *pSrc++;
acc0 = (real * real);
acc1 = (imag * imag);
/* store the result in 2.14 format in the destination buffer. */
arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++);
/* Decrement the loop counter */
numSamples--;
}
#endif /* #if defined (ARM_MATH_DSP) */
}
/**
* @} end of cmplx_mag group
*/