parent
94b88c177a
commit
eecf4dba81
@ -0,0 +1 @@ |
||||
Animated rainbow - useful for testing RGB strips |
@ -1,13 +0,0 @@ |
||||
#pragma once |
||||
#include <stdint.h> |
||||
|
||||
const uint8_t FADE_128[] = { |
||||
0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, |
||||
5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 10, 11, 12, 13, 14, |
||||
14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, |
||||
38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 58, 59, 61, 63, |
||||
65, 67, 68, 69, 71, 72, 74, 76, 78, 80, 82, 85, 88, 90, 92, 95, 98, 100, |
||||
103, 106, 109, 112, 116, 119, 122, 125, 129, 134, 138, 142, 147, 151, |
||||
153, 156, 160, 163, 165, 170, 175, 180, 185, 190, 195, 200, 207, 214, 218, |
||||
221, 225, 228, 232, 234, 241, 248, 254, 255 |
||||
}; |
@ -0,0 +1,170 @@ |
||||
|
||||
MCU = atmega328p
|
||||
|
||||
F_CPU = 16000000
|
||||
|
||||
LFUSE = 0xFF
|
||||
HFUSE = 0xDE
|
||||
EFUSE = 0x05
|
||||
|
||||
MAIN = main.c
|
||||
|
||||
## If you've split your program into multiple files,
|
||||
## include the additional .c source (in same directory) here
|
||||
## (and include the .h files in your foo.c)
|
||||
LOCAL_SOURCE =
|
||||
|
||||
## Here you can link to one more directory (and multiple .c files)
|
||||
# EXTRA_SOURCE_DIR = ../AVR-Programming-Library/
|
||||
EXTRA_SOURCE_DIR = lib/
|
||||
EXTRA_SOURCE_FILES = adc.c hsl.c
|
||||
|
||||
EXTRA_FLAGS =
|
||||
#-DHSL_LINEAR=1
|
||||
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Programmer Defaults ##########
|
||||
########## Set up once, then forget about it ##########
|
||||
########## (Can override. See bottom of file.) ##########
|
||||
##########------------------------------------------------------##########
|
||||
#19200
|
||||
PROGRAMMER_TYPE = arduino
|
||||
PROGRAMMER_ARGS = -b 57600 -P /dev/ttyUSB0
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Makefile Magic! ##########
|
||||
########## Summary: ##########
|
||||
########## We want a .hex file ##########
|
||||
########## Compile source files into .elf ##########
|
||||
########## Convert .elf file into .hex ##########
|
||||
########## You shouldn't need to edit below. ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
## Defined programs / locations
|
||||
CC = avr-gcc
|
||||
OBJCOPY = avr-objcopy
|
||||
OBJDUMP = avr-objdump
|
||||
AVRSIZE = avr-size
|
||||
AVRDUDE = avrdude
|
||||
|
||||
## Compilation options, type man avr-gcc if you're curious.
|
||||
CFLAGS = -std=gnu99 -mmcu=$(MCU) -DF_CPU=$(F_CPU)UL -I. -I$(EXTRA_SOURCE_DIR)
|
||||
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
|
||||
CFLAGS += -Wall -Wno-main -Wno-strict-prototypes -Wno-comment
|
||||
CFLAGS += -g2 -Wextra -pedantic -Wfatal-errors
|
||||
CFLAGS += -ffunction-sections -fdata-sections -Wl,--gc-sections -Wl,--relax
|
||||
CFLAGS += $(EXTRA_FLAGS)
|
||||
|
||||
CFLAGS_BUILD = $(CFLAGS) -Os
|
||||
|
||||
# CFLAGS += -lm
|
||||
## CFLAGS += -Wl,-u,vfprintf -lprintf_flt -lm ## for floating-point printf
|
||||
## CFLAGS += -Wl,-u,vfprintf -lprintf_min ## for smaller printf
|
||||
|
||||
## Lump target and extra source files together
|
||||
TARGET = $(strip $(basename $(MAIN)))
|
||||
SRC1 = $(TARGET).c
|
||||
SRC = $(SRC1)
|
||||
EXTRA_SOURCE = $(addprefix $(EXTRA_SOURCE_DIR), $(EXTRA_SOURCE_FILES))
|
||||
SRC += $(EXTRA_SOURCE)
|
||||
SRC += $(LOCAL_SOURCE)
|
||||
|
||||
## List of all header files
|
||||
HEADERS = $(SRC:.c=.h)
|
||||
|
||||
## For every .c file, compile an .o object file
|
||||
OBJ = $(SRC:.c=.o)
|
||||
|
||||
## Generic Makefile targets. (Only .hex file is necessary)
|
||||
all: $(TARGET).hex size |
||||
pre: $(TARGET).pre |
||||
|
||||
%.hex: %.elf |
||||
$(OBJCOPY) -R .eeprom -O ihex $< $@
|
||||
|
||||
%.elf: $(SRC) |
||||
$(CC) $(CFLAGS_BUILD) $(SRC) --output $@
|
||||
|
||||
%.pre: $(SRC1) |
||||
$(CC) $(CFLAGS) -E $(SRC1) --output $@
|
||||
|
||||
%.eeprom: %.elf |
||||
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@
|
||||
|
||||
debug: |
||||
@echo
|
||||
@echo "Source files:" $(SRC)
|
||||
@echo "MCU, F_CPU, BAUD:" $(MCU), $(F_CPU), $(BAUD)
|
||||
@echo
|
||||
|
||||
# Optionally create listing file from .elf
|
||||
# This creates approximate assembly-language equivalent of your code.
|
||||
# Useful for debugging time-sensitive bits,
|
||||
# or making sure the compiler does what you want.
|
||||
disassemble: $(TARGET).lst |
||||
|
||||
dis: disassemble |
||||
lst: disassemble |
||||
|
||||
eeprom: $(TARGET).eeprom |
||||
|
||||
%.lst: %.elf |
||||
$(OBJDUMP) -S $< > $@
|
||||
|
||||
# Optionally show how big the resulting program is
|
||||
size: $(TARGET).elf |
||||
$(AVRSIZE) -C --mcu=$(MCU) $(TARGET).elf
|
||||
|
||||
clean: |
||||
rm -f $(TARGET).elf $(TARGET).hex $(TARGET).obj \
|
||||
$(TARGET).o $(TARGET).d $(TARGET).eep $(TARGET).lst \
|
||||
$(TARGET).lss $(TARGET).sym $(TARGET).map $(TARGET)~ \
|
||||
$(TARGET).eeprom
|
||||
|
||||
squeaky_clean: |
||||
rm -f *.elf *.hex *.obj *.o *.d *.eep *.lst *.lss *.sym *.map *~
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Programmer-specific details ##########
|
||||
########## Flashing code to AVR using avrdude ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
flash: $(TARGET).hex |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U flash:w:$<
|
||||
|
||||
flash_eeprom: $(TARGET).eeprom |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U eeprom:w:$<
|
||||
|
||||
terminal: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nt
|
||||
|
||||
|
||||
flash_arduino: PROGRAMMER_TYPE = arduino |
||||
flash_arduino: PROGRAMMER_ARGS = |
||||
flash_arduino: flash |
||||
|
||||
flash_dragon_isp: PROGRAMMER_TYPE = dragon_isp |
||||
flash_dragon_isp: PROGRAMMER_ARGS = |
||||
flash_dragon_isp: flash |
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Fuse settings and suitable defaults ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
## Generic
|
||||
FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
|
||||
|
||||
fuses: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) \
|
||||
$(PROGRAMMER_ARGS) $(FUSE_STRING)
|
||||
show_fuses: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nv
|
||||
|
||||
## Called with no extra definitions, sets to defaults
|
||||
set_default_fuses: FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m |
||||
set_default_fuses: fuses |
@ -0,0 +1,11 @@ |
||||
Random color flasher, with fading. |
||||
|
||||
Color is atm restricted to hues of blue-cyan. |
||||
|
||||
Works with a 4x4 zigzag screen |
||||
|
||||
0->1->2->3 |
||||
7<-6<-5<-4 |
||||
8->... |
||||
|
||||
(But will work with any screen since there's no pattern to be preserved) |
@ -0,0 +1,10 @@ |
||||
AVR utils library |
||||
================= |
||||
|
||||
This is my ever-evolving library (not only) for AVR programming. |
||||
|
||||
When I'm done with a project, I copy the current library to the project, so it doesn't break when I do further improvements. |
||||
|
||||
Each library file contains a large comment block explaining it's function. |
||||
|
||||
You may need to add "c" files to your makefile for some of the library files. |
@ -0,0 +1,46 @@ |
||||
#include <avr/io.h> |
||||
#include <stdbool.h> |
||||
|
||||
#include "calc.h" |
||||
#include "adc.h" |
||||
|
||||
/** Initialize the ADC */ |
||||
void adc_init() |
||||
{ |
||||
ADCSRA |= _BV(ADPS2) | _BV(ADPS1) | _BV(ADPS0); // 128 prescaler -> 125 kHz
|
||||
ADMUX |= _BV(REFS0); // Voltage reference
|
||||
sbi(ADCSRA, ADEN); // Enable ADC
|
||||
} |
||||
|
||||
|
||||
/** Disable AD */ |
||||
void adc_disable() |
||||
{ |
||||
cbi(ADCSRA, ADEN); |
||||
} |
||||
|
||||
|
||||
/** Sample analog pin with 8-bit precision */ |
||||
uint8_t adc_read_byte(uint8_t channel) |
||||
{ |
||||
write_low_nibble(ADMUX, channel); // Select channel to sample
|
||||
sbi(ADMUX, ADLAR); // Align result to left
|
||||
sbi(ADCSRA, ADSC); // Start conversion
|
||||
|
||||
while(bit_is_high(ADCSRA, ADSC)); // Wait for it...
|
||||
|
||||
return ADCH; // The upper 8 bits of ADC result
|
||||
} |
||||
|
||||
|
||||
/** Sample analog pin with 10-bit precision */ |
||||
uint16_t adc_read_word(uint8_t channel) |
||||
{ |
||||
write_low_nibble(ADMUX, channel); // Select channel to sample
|
||||
cbi(ADMUX, ADLAR); // Align result to right
|
||||
sbi(ADCSRA, ADSC); // Start conversion
|
||||
|
||||
while(get_bit(ADCSRA, ADSC)); // Wait for it...
|
||||
|
||||
return ADCW; // The whole ADC word (10 bits)
|
||||
} |
@ -0,0 +1,19 @@ |
||||
#pragma once |
||||
|
||||
/*
|
||||
Utilities for build-in A/D converter |
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
|
||||
/** Initialize the ADC */ |
||||
void adc_init(); |
||||
|
||||
/** Disable AD (for power saving?) */ |
||||
void adc_disable(); |
||||
|
||||
/** Sample analog pin with 8-bit precision */ |
||||
uint8_t adc_read_byte(uint8_t channel); |
||||
|
||||
/** Sample analog pin with 10-bit precision */ |
||||
uint16_t adc_read_word(uint8_t channel); |
@ -0,0 +1,42 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Pin definitions for Arduino (Pro Mini with ATmega328P) |
||||
*/ |
||||
|
||||
#include "pins.h" |
||||
|
||||
#define D0 D,0 |
||||
#define D1 D,1 |
||||
#define D2 D,2 |
||||
#define D3 D,3 |
||||
#define D4 D,4 |
||||
#define D5 D,5 |
||||
#define D6 D,6 |
||||
#define D7 D,7 |
||||
#define D8 B,0 |
||||
#define D9 B,1 |
||||
#define D10 B,2 |
||||
|
||||
// MOSI MISO SCK - not good for input
|
||||
#define D11 B,3 |
||||
#define D12 B,4 |
||||
#define D13 B,5 |
||||
|
||||
#define D14 C,0 |
||||
#define D15 C,1 |
||||
#define D16 C,2 |
||||
#define D17 C,3 |
||||
#define D18 C,4 |
||||
#define D19 C,5 |
||||
#define D20 C,6 |
||||
#define D21 C,7 |
||||
|
||||
#define A0 C,0 |
||||
#define A1 C,1 |
||||
#define A2 C,2 |
||||
#define A3 C,3 |
||||
#define A4 C,4 |
||||
#define A5 C,5 |
||||
#define A6 C,6 |
||||
#define A7 C,7 |
@ -0,0 +1,89 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Bit and byte manipulation utilities |
||||
*/ |
||||
|
||||
|
||||
// --- Increment in range ---
|
||||
// when overflown, wraps within range. Lower bound < upper bound.
|
||||
// ..., upper bound excluded
|
||||
#define inc_wrap(var, min, max) do { if ((var) >= (max - 1)) { (var) = (min); } else { (var)++; } } while(0) |
||||
// ..., upper bound included
|
||||
#define inc_wrapi(var, min, max) inc_wrap((var), (min), (max) + 1) |
||||
|
||||
|
||||
// --- Decrement in range ---
|
||||
// when underflown, wraps within range. Lower bound < upper bound.
|
||||
// ..., upper bound excluded
|
||||
#define dec_wrap(var, min, max) do { if ((var) <= (min)) { (var) = (max) - 1; } else { (var)--; } } while(0) |
||||
// ..., upper bound included
|
||||
#define dec_wrapi(var, min, max) dec_wrap((var), (min), (max) + 1) |
||||
|
||||
|
||||
// --- Bit manipulation --
|
||||
|
||||
// Set bit
|
||||
#define sbi(reg, bit) do { (reg) |= (1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
// Clear bit
|
||||
#define cbi(reg, bit) do { (reg) &= ~(1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
// Get n-th bit
|
||||
#define read_bit(reg, bit) (((reg) >> (uint8_t)(bit)) & 0x1) |
||||
#define get_bit(reg, bit) read_bit(reg, bit) |
||||
|
||||
// Test n-th bit (Can't use bit_is_set, as it's redefined in sfr_def.h)
|
||||
#define bit_is_high(reg, bit) read_bit(reg, bit) |
||||
#define bit_is_low(reg, bit) (!read_bit(reg, bit)) |
||||
|
||||
// Write value to n-th bit
|
||||
#define write_bit(reg, bit, value) do { (reg) = ((reg) & ~(1 << (uint8_t)(bit))) | (((uint8_t)(value) & 0x1) << (uint8_t)(bit)); } while(0) |
||||
#define set_bit(reg, bit, value) write_bit(reg, bit, value) |
||||
|
||||
// Invert n-th bit
|
||||
#define toggle_bit(reg, bit) do { (reg) ^= (1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
|
||||
// --- Bit manipulation with pointer to variable ---
|
||||
|
||||
// Set n-th bit in pointee
|
||||
#define sbi_p(reg_p, bit) do { (*(reg_p)) |= (1 << (uint8_t)(bit)); } while(0) |
||||
// Clear n-th bit in pointee
|
||||
#define cbi_p(reg_p, bit) do { (*(reg_p)) &= ~(1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
// Get n-th bit in pointee
|
||||
#define read_bit_p(reg_p, bit) ((*(reg_p) >> (uint8_t)(bit)) & 0x1) |
||||
#define get_bit_p(reg_p, bit) read_bit_p(reg_p, bit) |
||||
|
||||
// Test n-th bit in pointee (Can't use bit_is_set, as it's redefined in sfr_def.h)
|
||||
#define bit_is_high_p(reg_p, bit) read_bit_p(reg_p, bit) |
||||
#define bit_is_low_p(reg_p, bit) (!read_bit_p(reg_p, bit)) |
||||
|
||||
// Write value to a bit in pointee
|
||||
#define write_bit_p(reg_p, bit, value) do { *(reg_p) = (*(reg_p) & ~(1 << ((uint8_t)(bit) & 0x1))) | (((uint8_t)(value) & 0x1) << (uint8_t)(bit)); } while(0) |
||||
#define set_bit_p(reg_p, bit, value) write_bit_p(reg_p, bit, value) |
||||
#define toggle_bit_p(reg_p, bit) do { *(reg_p) ^= (1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
|
||||
// --- Nibble manipulation ---
|
||||
|
||||
// Replace nibble in a byte
|
||||
#define write_low_nibble(reg, value) do { (reg) = ((reg) & 0xF0) | ((uint8_t)(value) & 0xF); } while(0) |
||||
#define write_high_nibble(reg, value) do { (reg) = ((reg) & 0x0F) | (((uint8_t)(value) & 0xF) << 4); } while(0) |
||||
|
||||
#define write_low_nibble_p(reg_p, value) do { *(reg_p) = (*(reg_p) & 0xF0) | ((uint8_t)(value) & 0xF); } while(0) |
||||
#define write_high_nibble_p(reg_p, value) do { *(reg_p) = (*(reg_p) & 0x0F) | (((uint8_t)(value) & 0xF) << 4); } while(0) |
||||
|
||||
|
||||
// --- Range tests ---
|
||||
|
||||
// Test if X is within low..high, regardless of bounds order
|
||||
#define in_range(x, low, high) ((((low) < (high)) && ((x) >= (low) && (x) < (high))) || (((low) > (high)) && ((x) >= (high) && (x) < (low)))) |
||||
// ..., include greater bound
|
||||
#define in_rangei(x, low, high) ((((low) <= (high)) && ((x) >= (low) && (x) <= (high))) || (((low) > (high)) && ((x) >= (high) && (x) <= (low)))) |
||||
|
||||
// Test if X in low..high, wrap around ends if needed.
|
||||
#define in_range_wrap(x, low, high) ((((low) < (high)) && ((x) >= (low) && (x) < (high))) || (((low) > (high)) && ((x) >= (low) || (x) < (high)))) |
||||
// ..., include upper bound
|
||||
#define in_range_wrapi(x, low, high) ((((low) <= (high)) && ((x) >= (low) && (x) <= (high))) || (((low) > (high)) && ((x) >= (low) || (x) <= (high)))) |
@ -0,0 +1,84 @@ |
||||
#pragma once |
||||
|
||||
/*
|
||||
Some useful utilities for RGB color manipulation |
||||
|
||||
The XXXc macros don't use cast, so they can be used in array initializers. |
||||
|
||||
xrgb ... 3-byte true-color RGB (8 bits per component) |
||||
rgbXX ... XX-bit color value, with equal nr of bits per component |
||||
|
||||
XX_r (_g, _b) ... extract component from the color, and convert it to 0..255 |
||||
*/ |
||||
|
||||
|
||||
typedef struct { |
||||
uint8_t r; |
||||
uint8_t g; |
||||
uint8_t b; |
||||
} xrgb_t; |
||||
|
||||
typedef uint32_t rgb24_t; |
||||
typedef uint16_t rgb16_t; |
||||
typedef uint16_t rgb12_t; |
||||
typedef uint8_t rgb6_t; |
||||
|
||||
|
||||
#define xrgb(rr, gg, bb) ((xrgb_t)xrgbc(rr, gg, bb)) |
||||
// xrgb for constant array declarations
|
||||
#define xrgbc(rr, gg, bb) { .r = ((uint8_t)(rr)), .g = ((uint8_t)(gg)), .b = ((uint8_t)(bb)) } |
||||
#define xrgb_r(c) ((uint8_t)(c.r)) |
||||
#define xrgb_g(c) ((uint8_t)(c.g)) |
||||
#define xrgb_b(c) ((uint8_t)(c.b)) |
||||
#define xrgb_rgb24(c) ((((rgb24_t)c.r) << 16) | (((rgb24_t)c.g) << 8) | (((rgb24_t)c.b))) |
||||
#define xrgb_rgb15(c) (((((rgb15_t)c.r) & 0xF8) << 7) | ((((rgb15_t)c.g) & 0xF8) << 2) | ((((rgb15_t)c.b) & 0xF8) >> 3)) |
||||
#define xrgb_rgb12(c) (((((rgb12_t)c.r) & 0xF0) << 4) | ((((rgb12_t)c.g) & 0xF0)) | ((((rgb12_t)c.b) & 0xF0) >> 4)) |
||||
#define xrgb_rgb6(c) (((((rgb6_t)c.r) & 0xC0) >> 2) | ((((rgb6_t)c.g) & 0xC0) >> 4) | ((((rgb6_t)c.b) & 0xC0) >> 6)) |
||||
|
||||
|
||||
#define rgb24c(r,g,b) (((((rgb24_t)r) & 0xFF) << 16) | ((((rgb24_t)g) & 0xFF) << 8) | (((rgb24_t)b) & 0xFF)) |
||||
#define rgb24(r,g,b) ((rgb24_t) rgb24(r,g,b)) |
||||
|
||||
#define rgb24_r(c) ((((rgb24_t) (c)) >> 16) & 0xFF) |
||||
#define rgb24_g(c) ((((rgb24_t) (c)) >> 8) & 0xFF) |
||||
#define rgb24_b(c) ((((rgb24_t) (c)) >> 0) & 0xFF) |
||||
#define rgb24_xrgb(c) xrgb(rgb24_r(c), rgb24_g(c), rgb24_b(c)) |
||||
#define rgb24_xrgbc(c) xrgbc(rgb24_r(c), rgb24_g(c), rgb24_b(c)) |
||||
|
||||
|
||||
#define rgb15(r,g,b) ((rgb16_t) rgb15c(r,g,b)) |
||||
#define rgb15c(r,g,b) (((r & 0x1F) << 10) | ((g & 0x1F) << 5) | (b & 0x1F)) |
||||
|
||||
#define rgb15_r(c) ((((rgb15_t) (c)) & 0x7C00) >> 7) |
||||
#define rgb15_g(c) ((((rgb15_t) (c)) & 0x3E0) >> 2) |
||||
#define rgb15_b(c) ((((rgb15_t) (c)) & 0x1F) << 3) |
||||
#define rgb15_xrgb(c) xrgb(rgb15_r(c), rgb15_g(c), rgb15_b(c)) |
||||
#define rgb15_rgb24(c) rgb24(rgb15_r(c), rgb15_g(c), rgb15_b(c)) |
||||
#define rgb15_rgb24c(c) rgb24c(rgb15_r(c), rgb15_g(c), rgb15_b(c)) |
||||
|
||||
|
||||
#define rgb12(r,g,b) ((rgb12_t) rgb12c(r,g,b)) |
||||
#define rgb12c(r,g,b) (((r & 0xF) << 8) | ((g & 0xF) << 4) | (b & 0xF)) |
||||
|
||||
#define rgb12_r(c) ((((rgb12_t) (c)) & 0xF00) >> 4) |
||||
#define rgb12_g(c) (((rgb12_t) (c)) & 0xF0) |
||||
#define rgb12_b(c) (((r(rgb12_t) (c)gb) & 0x0F) << 4) |
||||
#define rgb12_xrgb(c) xrgb(rgb12_r(c), rgb12_g(c), rgb12_b(c)) |
||||
#define rgb12_xrgbc(c) xrgbc(rgb12_r(c), rgb12_g(c), rgb12_b(c)) |
||||
#define rgb12_rgb24(c) rgb24(rgb12_r(c), rgb12_g(c), rgb12_b(c)) |
||||
#define rgb12_rgb24c(c) rgb24c(rgb12_r(c), rgb12_g(c), rgb12_b(c)) |
||||
|
||||
|
||||
#define rgb6(r,g,b) ((rgb6_t) rgb6c(r,g,b)) |
||||
#define rgb6c(r,g,b) (((r & 3) << 4) | ((g & 3) << 2) | (b & 3)) |
||||
|
||||
#define rgb6_r(c) ((((rgb6_t) (c)) & 0x30) << 2) |
||||
#define rgb6_g(c) ((((rgb6_t) (c)) & 0xC) << 4) |
||||
#define rgb6_b(c) ((((rgb6_t) (c)) & 0x3) << 6) |
||||
#define rgb6_xrgb(c) xrgb(rgb6_r(c), rgb6_g(c), rgb6_b(c)) |
||||
#define rgb6_xrgbc(c) xrgbc(rgb6_r(c), rgb6_g(c), rgb6_b(c)) |
||||
#define rgb6_rgb24(c) rgb24(rgb6_r(c), rgb6_g(c), rgb6_b(c)) |
||||
#define rgb6_rgb24c(c) rgb24c(rgb6_r(c), rgb6_g(c), rgb6_b(c)) |
||||
|
||||
#define add_xrgb(x, y) ((xrgb_t) { (((y).r > (255 - (x).r)) ? 255 : ((x).r + (y).r)), (((y).g > (255 - (x).g)) ? 255 : ((x).g + (y).g)), (((y).b > 255 - (x).b) ? 255 : ((x).b + (y).b)) }) |
||||
|
@ -0,0 +1,45 @@ |
||||
#include <avr/io.h> |
||||
#include <stdbool.h> |
||||
|
||||
#include "debounce.h" |
||||
#include "calc.h" |
||||
#include "pins.h" |
||||
#include "debo_config.h" |
||||
|
||||
/** Debounce data array */ |
||||
uint8_t debo_next_slot = 0; |
||||
|
||||
uint8_t debo_register(PORT_P reg, uint8_t bit, bool invert) |
||||
{ |
||||
debo_slots[debo_next_slot] = (debo_slot_t){ |
||||
.reg = reg, |
||||
.bit = bit | ((invert & 1) << 7) | (get_bit_p(reg, bit) << 6), // bit 7 = invert, bit 6 = state
|
||||
.count = 0, |
||||
}; |
||||
|
||||
return debo_next_slot++; |
||||
} |
||||
|
||||
|
||||
/** Check debounced pins, should be called periodically. */ |
||||
void debo_tick() |
||||
{ |
||||
for (uint8_t i = 0; i < debo_next_slot; i++) { |
||||
// current pin value (right 3 bits, xored with inverse bit)
|
||||
bool value = get_bit_p(debo_slots[i].reg, debo_slots[i].bit & 0x7); |
||||
|
||||
if (value != get_bit(debo_slots[i].bit, 6)) { |
||||
|
||||
// different pin state than last recorded state
|
||||
if (debo_slots[i].count < DEBO_TICKS) { |
||||
debo_slots[i].count++; |
||||
} else { |
||||
// overflown -> latch value
|
||||
set_bit(debo_slots[i].bit, 6, value); // set state bit
|
||||
debo_slots[i].count = 0; |
||||
} |
||||
} else { |
||||
debo_slots[i].count = 0; // reset the counter
|
||||
} |
||||
} |
||||
} |
@ -0,0 +1,63 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
An implementation of button debouncer. |
||||
|
||||
---- |
||||
|
||||
You must provide a config file debo_config.h (next to your main.c) |
||||
|
||||
Example: |
||||
#pragma once |
||||
#define DEBO_CHANNELS 2 |
||||
#define DDEBO_TICKS 5 |
||||
|
||||
---- |
||||
|
||||
A pin is registered like this: |
||||
|
||||
#define BTN1 B,0 |
||||
#define BTN2 B,1 |
||||
|
||||
debo_add(BTN0); // The function returns number assigned to the pin (0, 1, ...)
|
||||
debo_add_rev(BTN1); // active low
|
||||
debo_register(&PINB, PB2, 0); // direct access - register, pin & invert
|
||||
|
||||
Then periodically call the tick function (perhaps in a timer interrupt): |
||||
|
||||
debo_tick(); |
||||
|
||||
To check if input is active, use |
||||
|
||||
debo_get_pin(0); // state of input #0 (registered first)
|
||||
debo_get_pin(1); // state of input #1 (registered second)
|
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
#include <stdbool.h> |
||||
|
||||
#include "calc.h" |
||||
#include "pins.h" |
||||
#include "debo_config.h" |
||||
|
||||
/* Internal deboucer entry */ |
||||
typedef struct { |
||||
PORT_P reg; // pointer to IO register
|
||||
uint8_t bit; // bits 6 and 7 of this hold "state" & "invert" flag
|
||||
uint8_t count; // number of ticks this was in the new state
|
||||
} debo_slot_t; |
||||
|
||||
debo_slot_t debo_slots[DEBO_CHANNELS]; |
||||
|
||||
/** Add a pin for debouncing */ |
||||
#define debo_add_rev(io) debo_register(&io2pin(io_pack(io)), io2n(io_pack(io)), 1) |
||||
#define debo_add(io) debo_register(&io2pin(io_pack(io)), io2n(io_pack(io)), 0) |
||||
|
||||
/** Add a pin for debouncing (low level function) */ |
||||
uint8_t debo_register(PORT_P pin_reg_pointer, uint8_t bit, bool invert); |
||||
|
||||
/** Check debounced pins, should be called periodically. */ |
||||
void debo_tick(); |
||||
|
||||
/** Get a value of debounced pin */ |
||||
#define debo_get_pin(i) (get_bit(debo_slots[i].bit, 6) ^ get_bit(debo_slots[i].bit, 7)) |
@ -0,0 +1,89 @@ |
||||
#include <stdlib.h> |
||||
#include <stdint.h> |
||||
#include "colors.h" |
||||
#include "hsl.h" |
||||
|
||||
#ifdef HSL_LINEAR |
||||
const uint8_t FADE_128[] = { |
||||
0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, |
||||
5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 10, 11, 12, 13, 14, |
||||
14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36, |
||||
38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 58, 59, 61, 63, |
||||
65, 67, 68, 69, 71, 72, 74, 76, 78, 80, 82, 85, 88, 90, 92, 95, 98, 100, |
||||
103, 106, 109, 112, 116, 119, 122, 125, 129, 134, 138, 142, 147, 151, |
||||
153, 156, 160, 163, 165, 170, 175, 180, 185, 190, 195, 200, 207, 214, 218, |
||||
221, 225, 228, 232, 234, 241, 248, 254, 255 |
||||
}; |
||||
#endif |
||||
|
||||
// based on: https://github.com/lewisd32/avr-hsl2rgb
|
||||
xrgb_t hsl2xrgb(const hsl_t cc) |
||||
{ |
||||
// 0 .. 256*3
|
||||
const uint16_t hh = (uint16_t) cc.h * 3; |
||||
const uint8_t hue_mod = hh % 256; |
||||
|
||||
uint8_t r_temp, g_temp, b_temp; |
||||
if (hh < 256) { |
||||
r_temp = hue_mod ^ 255; |
||||
g_temp = hue_mod; |
||||
b_temp = 0; |
||||
} else if (hh < 512) { |
||||
r_temp = 0; |
||||
g_temp = hue_mod ^ 255; |
||||
b_temp = hue_mod; |
||||
} else if (hh < 768) { |
||||
r_temp = hue_mod; |
||||
g_temp = 0; |
||||
b_temp = hue_mod ^ 255; |
||||
} else { |
||||
r_temp = 0; |
||||
g_temp = 0; |
||||
b_temp = 0; |
||||
} |
||||
|
||||
const uint8_t inverse_sat = (cc.s ^ 255); |
||||
|
||||
xrgb_t rgb; |
||||
|
||||
uint8_t t8; |
||||
uint16_t t16; |
||||
|
||||
#ifdef HSL_LINEAR |
||||
const uint8_t bri = FADE_128[cc.l>>1]; |
||||
#else |
||||
const uint8_t bri = cc.l; |
||||
#endif |
||||
|
||||
t8 = r_temp; |
||||
t16 = t8 * cc.s + t8; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
t8 = t8 + inverse_sat; |
||||
t16 = t8 * bri; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
rgb.r = t8; |
||||
|
||||
t8 = g_temp; |
||||
t16 = t8 * cc.s; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
t8 = t8 + inverse_sat; |
||||
t16 = t8 * bri; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
rgb.g = t8; |
||||
|
||||
t8 = b_temp; |
||||
t16 = t8 * cc.s; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
t8 = t8 + inverse_sat; |
||||
t16 = t8 * bri; |
||||
t16 = t16 + t8; |
||||
t8 = t16 >> 8; |
||||
rgb.b = t8; |
||||
|
||||
return rgb; |
||||
} |
@ -0,0 +1,19 @@ |
||||
#pragma once |
||||
|
||||
/*
|
||||
HSL support (addition to colors.h) |
||||
*/ |
||||
|
||||
#include "colors.h" |
||||
|
||||
// Define HSL_LINEAR to get more linear brightness in hsl->rgb conversion
|
||||
|
||||
// HSL data structure
|
||||
typedef struct { |
||||
uint8_t h; |
||||
uint8_t s; |
||||
uint8_t l; |
||||
} hsl_t; |
||||
|
||||
/* Convert HSL to XRGB */ |
||||
xrgb_t hsl2xrgb(const hsl_t color); |
@ -0,0 +1,284 @@ |
||||
#include <stdbool.h> |
||||
#include <stdint.h> |
||||
#include <avr/io.h> |
||||
#include <avr/pgmspace.h> |
||||
#include <util/delay.h> |
||||
|
||||
#include "calc.h" |
||||
#include "pins.h" |
||||
#include "nsdelay.h" |
||||
#include "lcd.h" |
||||
#include "lcd_config.h" |
||||
|
||||
// Start address of rows
|
||||
const uint8_t LCD_ROW_ADDR[] = {0x00, 0x40, 0x14, 0x54}; |
||||
|
||||
// Internal prototypes
|
||||
void _lcd_mode_r(); |
||||
void _lcd_mode_w(); |
||||
void _lcd_clk(); |
||||
void _lcd_wait_bf(); |
||||
void _lcd_write_byte(uint8_t bb); |
||||
uint8_t _lcd_read_byte(); |
||||
|
||||
|
||||
// Write utilities
|
||||
#define _lcd_write_low(bb) _lcd_write_nibble((bb) & 0x0F) |
||||
#define _lcd_write_high(bb) _lcd_write_nibble(((bb) & 0xF0) >> 4) |
||||
#define _lcd_write_nibble(nib) do { \ |
||||
write_pin(LCD_D7, get_bit((nib), 3)); \
|
||||
write_pin(LCD_D6, get_bit((nib), 2)); \
|
||||
write_pin(LCD_D5, get_bit((nib), 1)); \
|
||||
write_pin(LCD_D4, get_bit((nib), 0)); \
|
||||
} while(0) |
||||
|
||||
|
||||
// 0 W, 1 R
|
||||
bool _lcd_mode; |
||||
|
||||
|
||||
/** Initialize the display */ |
||||
void lcd_init() |
||||
{ |
||||
// configure pins as output
|
||||
as_output(LCD_E); |
||||
as_output(LCD_RW); |
||||
as_output(LCD_RS); |
||||
_lcd_mode = 1; // force data pins to output
|
||||
_lcd_mode_w(); |
||||
|
||||
// Magic sequence to invoke Cthulhu (or enter 4-bit mode)
|
||||
_delay_ms(16); |
||||
_lcd_write_nibble(0b0011); |
||||
_lcd_clk(); |
||||
_delay_ms(5); |
||||
_lcd_clk(); |
||||
_delay_ms(5); |
||||
_lcd_clk(); |
||||
_delay_ms(5); |
||||
_lcd_write_nibble(0b0010); |
||||
_lcd_clk(); |
||||
_delay_us(100); |
||||
|
||||
// Configure the display
|
||||
lcd_write_command(LCD_IFACE_4BIT_2LINE); |
||||
lcd_write_command(LCD_DISABLE); |
||||
lcd_write_command(LCD_CLEAR); |
||||
lcd_write_command(LCD_MODE_INC); |
||||
|
||||
// mark as enabled
|
||||
lcd_enable(); |
||||
} |
||||
|
||||
|
||||
/** Send a pulse on the ENABLE line */ |
||||
void _lcd_clk() |
||||
{ |
||||
pin_up(LCD_E); |
||||
delay_ns(420); |
||||
pin_down(LCD_E); |
||||
} |
||||
|
||||
|
||||
/** Enter READ mode */ |
||||
void _lcd_mode_r() |
||||
{ |
||||
if (_lcd_mode == 1) return; // already in R mode
|
||||
|
||||
pin_up(LCD_RW); |
||||
|
||||
as_input_pu(LCD_D7); |
||||
as_input_pu(LCD_D6); |
||||
as_input_pu(LCD_D5); |
||||
as_input_pu(LCD_D4); |
||||
|
||||
_lcd_mode = 1; |
||||
} |
||||
|
||||
|
||||
/** Enter WRITE mode */ |
||||
void _lcd_mode_w() |
||||
{ |
||||
if (_lcd_mode == 0) return; // already in W mode
|
||||
|
||||
pin_down(LCD_RW); |
||||
|
||||
as_output(LCD_D7); |
||||
as_output(LCD_D6); |
||||
as_output(LCD_D5); |
||||
as_output(LCD_D4); |
||||
|
||||
_lcd_mode = 0; |
||||
} |
||||
|
||||
|
||||
/** Read a byte */ |
||||
uint8_t _lcd_read_byte() |
||||
{ |
||||
_lcd_mode_r(); |
||||
|
||||
uint8_t res = 0; |
||||
|
||||
_lcd_clk(); |
||||
res = (read_pin(LCD_D7) << 7) | (read_pin(LCD_D6) << 6) | (read_pin(LCD_D5) << 5) | (read_pin(LCD_D4) << 4); |
||||
|
||||
_lcd_clk(); |
||||
res |= (read_pin(LCD_D7) << 3) | (read_pin(LCD_D6) << 2) | (read_pin(LCD_D5) << 1) | (read_pin(LCD_D4) << 0); |
||||
|
||||
return res; |
||||
} |
||||
|
||||
|
||||
/** Write an instruction byte */ |
||||
void lcd_write_command(uint8_t bb) |
||||
{ |
||||
_lcd_wait_bf(); |
||||
pin_down(LCD_RS); // select instruction register
|
||||
_lcd_write_byte(bb); // send instruction byte
|
||||
} |
||||
|
||||
|
||||
/** Write a data byte */ |
||||
void lcd_write_data(uint8_t bb) |
||||
{ |
||||
_lcd_wait_bf(); |
||||
pin_up(LCD_RS); // select data register
|
||||
_lcd_write_byte(bb); // send data byte
|
||||
} |
||||
|
||||
|
||||
/** Read BF & Address */ |
||||
uint8_t lcd_read_bf_addr() |
||||
{ |
||||
pin_down(LCD_RS); |
||||
return _lcd_read_byte(); |
||||
} |
||||
|
||||
|
||||
/** Read CGRAM or DDRAM */ |
||||
uint8_t lcd_read_ram() |
||||
{ |
||||
pin_up(LCD_RS); |
||||
return _lcd_read_byte(); |
||||
} |
||||
|
||||
|
||||
/** Write a byte using the 8-bit interface */ |
||||
void _lcd_write_byte(uint8_t bb) |
||||
{ |
||||
_lcd_mode_w(); // enter W mode
|
||||
|
||||
_lcd_write_high(bb); |
||||
_lcd_clk(); |
||||
|
||||
_lcd_write_low(bb); |
||||
_lcd_clk(); |
||||
} |
||||
|
||||
|
||||
|
||||
/** Wait until the device is ready */ |
||||
void _lcd_wait_bf() |
||||
{ |
||||
uint8_t d = 0; |
||||
while(d++ < 120 && lcd_read_bf_addr() & _BV(7)) |
||||
_delay_us(1); |
||||
} |
||||
|
||||
|
||||
/** Send a string to LCD */ |
||||
void lcd_str(char* str_p) |
||||
{ |
||||
while (*str_p) |
||||
lcd_char(*str_p++); |
||||
} |
||||
|
||||
|
||||
/** Sedn a char to LCD */ |
||||
void lcd_char(const char c) |
||||
{ |
||||
lcd_write_data(c); |
||||
} |
||||
|
||||
|
||||
/** Set cursor position */ |
||||
void lcd_xy(const uint8_t x, const uint8_t y) |
||||
{ |
||||
lcd_set_addr(LCD_ROW_ADDR[y] + (x)); |
||||
} |
||||
|
||||
|
||||
uint8_t _lcd_old_cursor = CURSOR_NONE; |
||||
bool _lcd_enabled = false; |
||||
|
||||
/** Set LCD cursor. If not enabled, only remember it. */ |
||||
void lcd_cursor(uint8_t type) |
||||
{ |
||||
_lcd_old_cursor = (type & CURSOR_BOTH); |
||||
|
||||
if (_lcd_enabled) lcd_write_command(LCD_CURSOR_NONE | _lcd_old_cursor); |
||||
} |
||||
|
||||
|
||||
/** Display display (preserving cursor) */ |
||||
void lcd_disable() |
||||
{ |
||||
lcd_write_command(LCD_DISABLE); |
||||
_lcd_enabled = false; |
||||
} |
||||
|
||||
|
||||
/** Enable display (restoring cursor) */ |
||||
void lcd_enable() |
||||
{ |
||||
_lcd_enabled = true; |
||||
lcd_cursor(_lcd_old_cursor); |
||||
} |
||||
|
||||
|
||||
/** Go home */ |
||||
void lcd_home() |
||||
{ |
||||
lcd_write_command(LCD_HOME); |
||||
} |
||||
|
||||
|
||||
/** Clear the screen */ |
||||
void lcd_clear() |
||||
{ |
||||
lcd_write_command(LCD_CLEAR); |
||||
} |
||||
|
||||
|
||||
/** Define a glyph */ |
||||
void lcd_define_glyph(const uint8_t index, const uint8_t* array) |
||||
{ |
||||
lcd_set_addr_cgram(index * 8); |
||||
for (uint8_t i = 0; i < 8; ++i) { |
||||
lcd_write_data(array[i]); |
||||
} |
||||
} |
||||
|
||||
|
||||
/** Define a glyph */ |
||||
void lcd_define_glyph_pgm(const uint8_t index, const uint8_t* array) |
||||
{ |
||||
lcd_set_addr_cgram(index * 8); |
||||
for (uint8_t i = 0; i < 8; ++i) { |
||||
lcd_write_data(pgm_read_byte(&array[i])); |
||||
} |
||||
} |
||||
|
||||
|
||||
/** Set address in CGRAM */ |
||||
void lcd_set_addr_cgram(const uint8_t acg) |
||||
{ |
||||
lcd_write_command(0b01000000 | ((acg) & 0b00111111)); |
||||
} |
||||
|
||||
|
||||
/** Set address in DDRAM */ |
||||
void lcd_set_addr(const uint8_t add) |
||||
{ |
||||
lcd_write_command(0b10000000 | ((add) & 0b01111111)); |
||||
} |
@ -0,0 +1,130 @@ |
||||
#pragma once |
||||
|
||||
/*
|
||||
HD44780 LCD display driver - 4-bit mode |
||||
|
||||
LCD pins are configured using a file lcd_config.h, which you |
||||
have to add next to your main.c file. |
||||
|
||||
Content can be something like this: |
||||
|
||||
#pragma once |
||||
#include "lib/arduino_pins.h" |
||||
#define LCD_RS D10 |
||||
#define LCD_RW D11 |
||||
#define LCD_E D12 |
||||
#define LCD_D4 D13 |
||||
#define LCD_D5 D14 |
||||
#define LCD_D6 D15 |
||||
#define LCD_D7 D16 |
||||
|
||||
*/ |
||||
|
||||
#include <stdint.h> |
||||
#include "lcd_config.h" |
||||
|
||||
// Commands
|
||||
|
||||
// Clear screen (reset)
|
||||
#define LCD_CLEAR 0b00000001 |
||||
// Move cursor to (0,0), unshift...
|
||||
#define LCD_HOME 0b00000010 |
||||
|
||||
// Set mode: Increment + NoShift
|
||||
#define LCD_MODE_INC 0b00000110 |
||||
// Set mode: Increment + Shift
|
||||
#define LCD_MODE_INC_SHIFT 0b00000111 |
||||
|
||||
// Set mode: Decrement + NoShift
|
||||
#define LCD_MODE_DEC 0b00000100 |
||||
// Set mode: Decrement + Shift
|
||||
#define LCD_MODE_DEC_SHIFT 0b00000101 |
||||
|
||||
// Disable display (data remains untouched)
|
||||
#define LCD_DISABLE 0b00001000 |
||||
|
||||
// Disable cursor
|
||||
#define LCD_CURSOR_NONE 0b00001100 |
||||
// Set cursor to still underscore
|
||||
#define LCD_CURSOR_BAR 0b00001110 |
||||
// Set cursor to blinking block
|
||||
#define LCD_CURSOR_BLINK 0b00001101 |
||||
// Set cursor to both of the above at once
|
||||
#define LCD_CURSOR_BOTH (LCD_CURSOR_BAR | LCD_CURSOR_BLINK) |
||||
|
||||
// Move cursor
|
||||
#define LCD_MOVE_LEFT 0b00010000 |
||||
#define LCD_MOVE_RIGHT 0b00010100 |
||||
|
||||
// Shift display
|
||||
#define LCD_SHIFT_LEFT 0b00011000 |
||||
#define LCD_SHIFT_RIGHT 0b00011100 |
||||
|
||||
// Set iface to 5x7 font, 1-line
|
||||
#define LCD_IFACE_4BIT_1LINE 0b00100000 |
||||
#define LCD_IFACE_8BIT_1LINE 0b00110000 |
||||
// Set iface to 5x7 font, 2-line
|
||||
#define LCD_IFACE_4BIT_2LINE 0b00101000 |
||||
#define LCD_IFACE_8BIT_2LINE 0b00111000 |
||||
|
||||
|
||||
/** Initialize the display */ |
||||
void lcd_init(); |
||||
|
||||
/** Write an instruction byte */ |
||||
void lcd_write_command(uint8_t bb); |
||||
|
||||
/** Write a data byte */ |
||||
void lcd_write_data(uint8_t bb); |
||||
|
||||
/** Read BF & Address */ |
||||
uint8_t lcd_read_bf_addr(); |
||||
|
||||
/** Read CGRAM or DDRAM */ |
||||
uint8_t lcd_read_ram(); |
||||
|
||||
/** Send a string to LCD */ |
||||
void lcd_str(char* str_p); |
||||
|
||||
/** Sedn a char to LCD */ |
||||
void lcd_char(const char c); |
||||
|
||||
/** Show string at X, Y */ |
||||
#define lcd_str_xy(x, y, str_p) do { lcd_xy((x), (y)); lcd_str((str_p)); } while(0) |
||||
|
||||
/** Show char at X, Y */ |
||||
#define lcd_char_xy(x, y, c) do { lcd_xy((x), (y)); lcd_char((c)); } while(0) |
||||
|
||||
/** Set cursor position */ |
||||
void lcd_xy(const uint8_t x, const uint8_t y); |
||||
|
||||
/** Set LCD cursor. If not enabled, only remember it. */ |
||||
#define CURSOR_NONE 0b00 |
||||
#define CURSOR_BAR 0b10 |
||||
#define CURSOR_BLINK 0b01 |
||||
#define CURSOR_BOTH 0b11 |
||||
void lcd_cursor(uint8_t type); |
||||
|
||||
/** Display display (preserving cursor) */ |
||||
void lcd_disable(); |
||||
|
||||
/** Enable display (restoring cursor) */ |
||||
void lcd_enable(); |
||||
|
||||
/** Go home */ |
||||
void lcd_home(); |
||||
|
||||
/** Clear the screen */ |
||||
void lcd_clear(); |
||||
|
||||
/** Define a glyph */ |
||||
void lcd_define_glyph(const uint8_t index, const uint8_t* array); |
||||
|
||||
/** Define a glyph */ |
||||
void lcd_define_glyph_pgm(const uint8_t index, const uint8_t* array); |
||||
|
||||
/** Set address in CGRAM */ |
||||
void lcd_set_addr_cgram(const uint8_t acg); |
||||
|
||||
/** Set address in DDRAM */ |
||||
void lcd_set_addr(const uint8_t add); |
@ -0,0 +1,22 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Custom loops |
||||
*/ |
||||
|
||||
// Repeat code n times (uint8_t counter)
|
||||
#define repeat(count) repeat_aux(count, _repeat_##__COUNTER__) |
||||
#define repeat_aux(count, cntvar) for (uint8_t cntvar = 0; cntvar < (count); cntvar++) |
||||
|
||||
// Repeat code n times (uint16_t counter)
|
||||
#define repeatx(count) repeatx_aux(count, _repeatx_##__COUNTER__) |
||||
#define repeatx_aux(count, cntvar) for (uint16_t cntvar = 0; cntvar < (count); cntvar++) |
||||
|
||||
// Repeat with custom counter name (uint8_t)
|
||||
#define loop(var, count) repeat_aux(count, var) |
||||
// ..., uint16_t
|
||||
#define loopx(var, count) repeatx_aux(count, var) |
||||
|
||||
// Do until condition is met
|
||||
#define until(what) while(!(what)) |
||||
|
@ -0,0 +1,6 @@ |
||||
#pragma once |
||||
|
||||
/** Weird constructs for the compiler */ |
||||
|
||||
// general macros
|
||||
#define SECTION(pos) __attribute__((naked, used, section(pos))) |
@ -0,0 +1,21 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Functions for precise delays (nanoseconds / cycles) |
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
#include <util/delay_basic.h> |
||||
#include <stdint.h> |
||||
|
||||
/* Convert nanoseconds to cycle count */ |
||||
#define ns2cycles(ns) ( (ns) / (1000000000L / (signed long) F_CPU) ) |
||||
|
||||
/** Wait c cycles */ |
||||
#define delay_c(c) (((c) > 0) ? __builtin_avr_delay_cycles(c) : __builtin_avr_delay_cycles(0)) |
||||
|
||||
/** Wait n nanoseconds, plus c cycles */ |
||||
#define delay_ns_c(ns, c) delay_c(ns2cycles(ns) + (c)) |
||||
|
||||
/** Wait n nanoseconds */ |
||||
#define delay_ns(ns) delay_c(ns2cycles(ns)) |
@ -0,0 +1,107 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
This file provides macros for pin manipulation. |
||||
|
||||
You can define your application pins like so: |
||||
|
||||
// Led at PORTB, pin 1
|
||||
#define LED B,1 |
||||
|
||||
// Switch at PORTD, pin 7
|
||||
#define SW1 D,7 |
||||
|
||||
Now you can use macros from this file to wirh with the pins, eg: |
||||
|
||||
as_output(LED); |
||||
as_input(SW1); |
||||
pullup_on(SW1); |
||||
|
||||
toggle_pin(LED); |
||||
while (pin_is_low(SW1)); |
||||
|
||||
- The macros io2XXX() can be used to get literal name of register associated with the pin. |
||||
- io2n() provides pin number. |
||||
- The XXX_aux() macros are internal and should not be used elsewhere. |
||||
- The io_pack() macro is used to pass pin (io) to other macro without expanding it. |
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
#include "calc.h" |
||||
|
||||
|
||||
// Get particular register associated with the name X (eg. D -> PORTD)
|
||||
#define reg_ddr(X) DDR ## X |
||||
#define reg_port(X) PORT ## X |
||||
#define reg_pin(X) PIN ## X |
||||
|
||||
#define io2ddr_aux(reg, bit) reg_ddr(reg) |
||||
#define io2ddr(io) io2ddr_aux(io) |
||||
#define io2port_aux(reg, bit) reg_port(reg) |
||||
#define io2port(io) io2port_aux(io) |
||||
#define io2pin_aux(reg, bit) reg_pin(reg) |
||||
#define io2pin(io) io2pin_aux(io) |
||||
#define io2n_aux(reg, bit) bit |
||||
#define io2n(io) io2n_aux(io) |
||||
|
||||
#define io_pack(port, bit) port, bit |
||||
|
||||
|
||||
// pointer to port
|
||||
typedef volatile uint8_t* PORT_P; |
||||
// number of bit in port
|
||||
typedef uint8_t BIT_N; |
||||
|
||||
|
||||
// === pin manipulation ===
|
||||
#define set_pin_aux(port, bit) sbi(reg_port(port), (bit)) |
||||
#define clear_pin_aux(port, bit) cbi(reg_port(port), (bit)) |
||||
#define read_pin_aux(port, bit) get_bit(reg_pin(port), (bit)) |
||||
#define write_pin_aux(port, bit, value) set_bit(reg_port(port), (bit), (value)) |
||||
#define toggle_pin_aux(port, bit) sbi(reg_pin(port), (bit)) |
||||
|
||||
|
||||
#define pin_up(io) set_pin_aux(io) |
||||
#define pin_high(io) set_pin_aux(io) |
||||
|
||||
#define pin_down(io) clear_pin_aux(io) |
||||
#define pin_low(io) clear_pin_aux(io) |
||||
|
||||
#define get_pin(io) read_pin_aux(io) |
||||
#define read_pin(io) read_pin_aux(io) |
||||
|
||||
#define pin_is_low(io) !read_pin_aux(io) |
||||
#define pin_is_high(io) read_pin_aux(io) |
||||
|
||||
#define set_pin(io, value) write_pin_aux(io, (value)) |
||||
#define write_pin(io, value) write_pin_aux(io, (value)) |
||||
#define toggle_pin(io) toggle_pin_aux(io) |
||||
|
||||
|
||||
|
||||
// setting pin direction
|
||||
#define as_input_aux(port, bit) cbi(reg_ddr(port), (bit)) |
||||
#define as_output_aux(port, bit) sbi(reg_ddr(port), (bit)) |
||||
#define set_dir_aux(port, bit, dir) write_bit(reg_ddr(port), (bit), (dir)) |
||||
|
||||
|
||||
#define as_input(io) as_input_aux(io) |
||||
#define as_input_pu(io) do { as_input_aux(io); pullup_enable_aux(io); } while(0) |
||||
|
||||
#define as_output(io) as_output_aux(io) |
||||
#define set_dir(io, dir) set_dir_aux(io, (dir)) |
||||
|
||||
|
||||
// setting pullup
|
||||
#define pullup_enable_aux(port, bit) sbi(reg_port(port), (bit)) |
||||
#define pullup_disable_aux(port, bit) cbi(reg_port(port), (bit)) |
||||
#define set_pullup_aux(port, bit, on) write_bit(reg_port(port), (bit), (on)) |
||||
|
||||
|
||||
#define pullup_enable(io) pullup_enable_aux(io) |
||||
#define pullup_on(io) pullup_enable_aux(io) |
||||
|
||||
#define pullup_disable(io) pullup_disable_aux(io) |
||||
#define pullup_off(io) pullup_disable_aux(io) |
||||
|
||||
#define set_pullup(io, on) set_pullup_aux(io, on) |
@ -0,0 +1,127 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Utils for driving a WS28xx (tested on WS2812B) RGB LED strips. |
||||
|
||||
It's implemented as macros to avoid overhead when passing values, and to |
||||
enable driving multiple strips at once. |
||||
|
||||
To avoid bloating your code, try to reduce the number of invocations - |
||||
compute color and then send it. |
||||
|
||||
[IMPORTANT] |
||||
|
||||
Some seemingly random influences can ruin the communication. |
||||
If you have enough memory, consider preparing the colors in array, |
||||
and sending this array using one of the "ws_send_XXX_array" macros. |
||||
|
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
|
||||
#include "pins.h" |
||||
#include "nsdelay.h" |
||||
#include "colors.h" |
||||
|
||||
/* Driver code for WS2812B */ |
||||
|
||||
// --- timing constraints (NS) ---
|
||||
|
||||
#ifndef WS_T_1H |
||||
# define WS_T_1H 700 |
||||
#endif |
||||
|
||||
#ifndef WS_T_1L |
||||
# define WS_T_1L 150 |
||||
#endif |
||||
|
||||
#ifndef WS_T_0H |
||||
# define WS_T_0H 150 |
||||
#endif |
||||
|
||||
#ifndef WS_T_0L |
||||
# define WS_T_0L 700 |
||||
#endif |
||||
|
||||
#ifndef WS_T_LATCH |
||||
# define WS_T_LATCH 7000 |
||||
#endif |
||||
|
||||
|
||||
/** Wait long enough for the colors to show */ |
||||
#define ws_show() do {delay_ns_c(WS_T_LATCH, 0); } while(0) |
||||
|
||||
|
||||
/** Send one byte to the RGB strip */ |
||||
#define ws_send_byte(io, bb) do { \ |
||||
for (volatile int8_t __ws_tmp = 7; __ws_tmp >= 0; --__ws_tmp) { \
|
||||
if ((bb) & (1 << __ws_tmp)) { \
|
||||
pin_high(io_pack(io)); delay_ns_c(WS_T_1H, -2); \
|
||||
pin_low(io_pack(io)); delay_ns_c(WS_T_1L, -10); \
|
||||
} else { \
|
||||
pin_high(io_pack(io)); delay_ns_c(WS_T_0H, -2); \
|
||||
pin_low(io_pack(io)); delay_ns_c(WS_T_0L, -10); \
|
||||
} \
|
||||
} \
|
||||
} while(0) |
||||
|
||||
|
||||
/** Send R,G,B color to the strip */ |
||||
#define ws_send_rgb(io, r, g, b) do { \ |
||||
ws_send_byte(io_pack(io), g); \
|
||||
ws_send_byte(io_pack(io), r); \
|
||||
ws_send_byte(io_pack(io), b); \
|
||||
} while(0) |
||||
|
||||
/** Send a RGB struct */ |
||||
#define ws_send_xrgb(io, xrgb) ws_send_rgb(io_pack(io), (xrgb).r, (xrgb).g, (xrgb).b) |
||||
|
||||
/** Send color hex */ |
||||
#define ws_send_rgb24(io, rgb) ws_send_rgb(io_pack(io), rgb24_r(rgb), rgb24_g(rgb), rgb24_b(rgb)) |
||||
#define ws_send_rgb15(io, rgb) ws_send_rgb(io_pack(io), rgb15_r(rgb), rgb15_g(rgb), rgb15_b(rgb)) |
||||
#define ws_send_rgb12(io, rgb) ws_send_rgb(io_pack(io), rgb12_r(rgb), rgb12_g(rgb), rgb12_b(rgb)) |
||||
#define ws_send_rgb6(io, rgb) ws_send_rgb(io_pack(io), rgb6_r(rgb), rgb6_g(rgb), rgb6_b(rgb)) |
||||
|
||||
/** Send array of colors */ |
||||
#define ws_send_xrgb_array(io, rgbs, length) __ws_send_array_proto(io_pack(io), (rgbs), (length), xrgb) |
||||
#define ws_send_rgb24_array(io, rgbs, length) __ws_send_array_proto(io_pack(io), (rgbs), (length), rgb24) |
||||
#define ws_send_rgb15_array(io, rgbs, length) __ws_send_array_proto(io_pack(io), (rgbs), (length), rgb15) |
||||
#define ws_send_rgb12_array(io, rgbs, length) __ws_send_array_proto(io_pack(io), (rgbs), (length), rgb12) |
||||
#define ws_send_rgb6_array(io, rgbs, length) __ws_send_array_proto(io_pack(io), (rgbs), (length), rgb6) |
||||
|
||||
// prototype for sending array. it's ugly, sorry.
|
||||
#define __ws_send_array_proto(io, rgbs, length, style) do { \ |
||||
for (uint8_t __ws_sap_i = 0; __ws_sap_i < length; __ws_sap_i++) { \
|
||||
style ## _t __ws_sap2 = (rgbs)[__ws_sap_i]; \
|
||||
ws_send_ ## style(io_pack(io), __ws_sap2); \
|
||||
} \
|
||||
} while(0) |
||||
|
||||
/** Send a 2D array to a zig-zag display */ |
||||
#define ws_send_xrgb_array_zigzag(io, rgbs, width, height) do { \ |
||||
int8_t __ws_sxaz_y, __ws_sxaz_x; \
|
||||
for(__ws_sxaz_y = 0; __ws_sxaz_y < (height); __ws_sxaz_y ++) { \
|
||||
for(__ws_sxaz_x = 0; __ws_sxaz_x < (width); __ws_sxaz_x++) { \
|
||||
ws_send_xrgb(io_pack(io), (rgbs)[__ws_sxaz_y][__ws_sxaz_x]); \
|
||||
} \
|
||||
__ws_sxaz_y++; \
|
||||
for(__ws_sxaz_x = (width) - 1; __ws_sxaz_x >= 0; __ws_sxaz_x--) { \
|
||||
ws_send_xrgb(io_pack(io), (rgbs)[__ws_sxaz_y][__ws_sxaz_x]); \
|
||||
} \
|
||||
} \
|
||||
} while(0) |
||||
|
||||
|
||||
/** Send a linear array to a zig-zag display as a n*m board (row-by-row) */ |
||||
#define ws_send_xrgb_array_zigzag_linear(io, rgbs, width, height) do { \ |
||||
int8_t __ws_sxazl_x, __ws_sxazl_y; \
|
||||
for(__ws_sxazl_y = 0; __ws_sxazl_y < (height); __ws_sxazl_y++) { \
|
||||
for(__ws_sxazl_x = 0; __ws_sxazl_x < (width); __ws_sxazl_x++) { \
|
||||
ws_send_xrgb(io_pack(io), (rgbs)[__ws_sxazl_y * (width) + __ws_sxazl_x]); \
|
||||
} \
|
||||
__ws_sxazl_y++; \
|
||||
for(__ws_sxazl_x = width-1; __ws_sxazl_x >=0; __ws_sxazl_x--) { \
|
||||
ws_send_xrgb(io_pack(io), (rgbs)[__ws_sxazl_y * (width) + __ws_sxazl_x]); \
|
||||
} \
|
||||
} \
|
||||
} while(0) |
@ -0,0 +1,68 @@ |
||||
#include <avr/io.h> |
||||
#include <avr/interrupt.h> |
||||
#include <util/delay.h> |
||||
#include <stdint.h> |
||||
#include <stdlib.h> |
||||
|
||||
#include "lib/meta.h" |
||||
#include "lib/arduino_pins.h" |
||||
#include "lib/calc.h" |
||||
|
||||
#include "lib/colors.h" |
||||
#include "lib/hsl.h" |
||||
#include "lib/adc.h" |
||||
|
||||
#define WS_T_1H 650 |
||||
#define WS_T_1L 200 |
||||
#define WS_T_0H 120 |
||||
#define WS_T_0L 650 |
||||
|
||||
#include "lib/ws_rgb.h" |
||||
|
||||
#define WS1 D2 |
||||
|
||||
void SECTION(".init8") init() |
||||
{ |
||||
adc_init(); |
||||
srand(adc_read_word(0)); |
||||
|
||||
as_output(WS1); |
||||
} |
||||
|
||||
|
||||
void main() |
||||
{ |
||||
#define WIDTH 4 |
||||
#define HEIGHT 4 |
||||
#define SIZE (WIDTH*HEIGHT) |
||||
hsl_t board[SIZE]; |
||||
xrgb_t screen[SIZE]; |
||||
|
||||
for (uint8_t i = 0; i < SIZE; i++) { |
||||
board[i] = (hsl_t) {.h=0, .s=255, .l=0}; |
||||
screen[i] = (xrgb_t) {.r=0, .g=0, .b=0}; |
||||
} |
||||
|
||||
while(1) { |
||||
for(uint8_t i = 0; i < SIZE; i++) { |
||||
if (board[i].l > 0) { |
||||
board[i].l--; |
||||
} |
||||
|
||||
screen[i] = hsl2xrgb(board[i]); |
||||
} |
||||
|
||||
if (rand() % 4 == 0) { |
||||
uint8_t i = rand() % SIZE; |
||||
|
||||
if (board[i].l == 0) { |
||||
board[i].h = 125 + rand() % 57; |
||||
board[i].s = 200 + rand() % 56; |
||||
board[i].l = 150 + rand() % 106; |
||||
} |
||||
} |
||||
|
||||
ws_send_xrgb_array_zigzag_linear(WS1, screen, 4, 4); |
||||
_delay_ms(10); |
||||
} |
||||
} |
@ -0,0 +1,3 @@ |
||||
at start, shows all colors as #888888; |
||||
|
||||
they then randomly drift (small number is randomly added to channels)- |
Loading…
Reference in new issue