divided some files into h and c, removed temporary "projects"

master
Ondřej Hruška 8 years ago
parent d960940a6d
commit e226999fb8
  1. 0
      devel/.gitignore
  2. 2
      devel/lib/README.md
  3. 46
      devel/lib/adc.c
  4. 38
      devel/lib/adc.h
  5. 3
      devel/lib/colors.h
  6. 45
      devel/lib/debounce.c
  7. 82
      devel/lib/debounce.h
  8. 76
      devel/lib/hsl.c
  9. 22
      devel/lib/hsl.h
  10. 284
      devel/lib/lcd.c
  11. 349
      devel/lib/lcd.h
  12. 13
      devel/lib/linear_fade.h
  13. 31
      devel/lib/yeolde.h
  14. 166
      devel/rgb_hsl/Makefile
  15. 1
      devel/rgb_hsl/lib
  16. 139
      devel/rgb_hsl/main.c
  17. 166
      devel/rgbs_test/Makefile
  18. 1
      devel/rgbs_test/lib
  19. 86
      devel/rgbs_test/main.c
  20. 166
      devel/snake/Makefile
  21. 351
      devel/snake/lcd_default.asm
  22. 1
      devel/snake/lib
  23. 426
      devel/snake/main.c
  24. 2
      devel/tmp/.gitignore

@ -6,3 +6,5 @@ This is my ever-evolving library (not only) for AVR programming.
When I'm done with a project, I copy the current library to the project, so it doesn't break when I do further improvements.
Each library file contains a large comment block explaining it's function.
You may need to add "c" files to your makefile for some of the library files.

@ -0,0 +1,46 @@
#include <avr/io.h>
#include <stdbool.h>
#include "calc.h"
#include "adc.h"
/** Initialize the ADC */
void adc_init()
{
ADCSRA |= _BV(ADPS2) | _BV(ADPS1) | _BV(ADPS0); // 128 prescaler -> 125 kHz
ADMUX |= _BV(REFS0); // Voltage reference
sbi(ADCSRA, ADEN); // Enable ADC
}
/** Disable AD */
void adc_disable()
{
cbi(ADCSRA, ADEN);
}
/** Sample analog pin with 8-bit precision */
uint8_t adc_read_byte(uint8_t channel)
{
write_low_nibble(ADMUX, channel); // Select channel to sample
sbi(ADMUX, ADLAR); // Align result to left
sbi(ADCSRA, ADSC); // Start conversion
while(bit_is_high(ADCSRA, ADSC)); // Wait for it...
return ADCH; // The upper 8 bits of ADC result
}
/** Sample analog pin with 10-bit precision */
uint16_t adc_read_word(uint8_t channel)
{
write_low_nibble(ADMUX, channel); // Select channel to sample
cbi(ADMUX, ADLAR); // Align result to right
sbi(ADCSRA, ADSC); // Start conversion
while(get_bit(ADCSRA, ADSC)); // Wait for it...
return ADCW; // The whole ADC word (10 bits)
}

@ -1,39 +1,19 @@
#pragma once
/*
Utilities for build-in A/D converter
*/
#include <avr/io.h>
#include <stdbool.h>
#include "calc.h"
/** Initialize the ADC */
void adc_init()
{
ADCSRA |= _BV(ADPS2) | _BV(ADPS1) | _BV(ADPS0); // 128 prescaler -> 125 kHz
ADMUX |= _BV(REFS0); // Voltage reference
sbi(ADCSRA, ADEN); // Enable ADC
}
void adc_init();
/** Disable AD (for power saving?) */
void adc_disable();
/** Sample analog pin with 8-bit precision */
uint8_t adc_read_byte(uint8_t channel)
{
write_low_nibble(ADMUX, channel); // Select channel to sample
sbi(ADMUX, ADLAR); // Align result to left
sbi(ADCSRA, ADSC); // Start conversion
while(bit_is_high(ADCSRA, ADSC)); // Wait for it...
return ADCH; // The upper 8 bits of ADC result
}
uint8_t adc_read_byte(uint8_t channel);
/** Sample analog pin with 10-bit precision */
uint16_t adc_read_word(uint8_t channel)
{
write_low_nibble(ADMUX, channel); // Select channel to sample
cbi(ADMUX, ADLAR); // Align result to right
sbi(ADCSRA, ADSC); // Start conversion
while(get_bit(ADCSRA, ADSC)); // Wait for it...
return ADCW; // The whole ADC word (10 bits)
}
uint16_t adc_read_word(uint8_t channel);

@ -11,6 +11,7 @@
XX_r (_g, _b) ... extract component from the color, and convert it to 0..255
*/
typedef struct {
uint8_t r;
uint8_t g;
@ -79,5 +80,5 @@ typedef uint8_t rgb6_t;
#define rgb6_rgb24(c) rgb24(rgb6_r(c), rgb6_g(c), rgb6_b(c))
#define rgb6_rgb24c(c) rgb24c(rgb6_r(c), rgb6_g(c), rgb6_b(c))
#define add_xrgb(x, y) ((xrgb_t) { (((y).r > (255 - (x).r)) ? 255 : ((x).r + (y).r)), (((y).g > (255 - (x).g)) ? 255 : ((x).g + (y).g)), (((y).b > 255 - (x).b) ? 255 : ((x).b + (y).b)) })

@ -0,0 +1,45 @@
#include <avr/io.h>
#include <stdbool.h>
#include "debounce.h"
#include "calc.h"
#include "pins.h"
#include "debo_config.h"
/** Debounce data array */
uint8_t debo_next_slot = 0;
uint8_t debo_register(PORT_P reg, uint8_t bit, bool invert)
{
debo_slots[debo_next_slot] = (debo_slot_t){
.reg = reg,
.bit = bit | ((invert & 1) << 7) | (get_bit_p(reg, bit) << 6), // bit 7 = invert, bit 6 = state
.count = 0,
};
return debo_next_slot++;
}
/** Check debounced pins, should be called periodically. */
void debo_tick()
{
for (uint8_t i = 0; i < debo_next_slot; i++) {
// current pin value (right 3 bits, xored with inverse bit)
bool value = get_bit_p(debo_slots[i].reg, debo_slots[i].bit & 0x7);
if (value != get_bit(debo_slots[i].bit, 6)) {
// different pin state than last recorded state
if (debo_slots[i].count < DEBO_TICKS) {
debo_slots[i].count++;
} else {
// overflown -> latch value
set_bit(debo_slots[i].bit, 6, value); // set state bit
debo_slots[i].count = 0;
}
} else {
debo_slots[i].count = 0; // reset the counter
}
}
}

@ -3,30 +3,34 @@
/**
An implementation of button debouncer.
First, the system must be initialized - even before including:
----
#define DEBO_CHANNELS 2
#define DEBO_TICKS 5
You must provide a config file debo_config.h (next to your main.c)
#inclue "lib/debounce.h"
Example:
#pragma once
#define DEBO_CHANNELS 2
#define DDEBO_TICKS 5
----
A pin is registered like this:
#define BTN1 B,0
#define BTN2 B,1
#define BTN1 B,0
#define BTN2 B,1
debo_add(BTN0); // The function returns number assigned to the pin (0, 1, ...)
debo_add_rev(BTN1); // active low
debo_register(&PINB, PB2, 0); // direct access - register, pin & invert
debo_add(BTN0); // The function returns number assigned to the pin (0, 1, ...)
debo_add_rev(BTN1); // active low
debo_register(&PINB, PB2, 0); // direct access - register, pin & invert
Then periodically call the tick function (perhaps in a timer interrupt):
debo_tick();
debo_tick();
To check if input is active, use
debo_get_pin(0); // state of input registered as #0
debo_get_pin(1); // state of input registered as #1
debo_get_pin(0); // state of input #0 (registered first)
debo_get_pin(1); // state of input #1 (registered second)
*/
#include <avr/io.h>
@ -34,18 +38,7 @@
#include "calc.h"
#include "pins.h"
// Number of pins to debounce
#ifndef DEBO_CHANNELS
# error "DEBO_CHANNELS not defined!"
#endif
#ifndef DEBO_TICKS
# warning "DEBO_TICKS not defined, defaulting to 5!"
# define DEBO_TICKS 5
#endif
#include "debo_config.h"
/* Internal deboucer entry */
typedef struct {
@ -54,50 +47,17 @@ typedef struct {
uint8_t count; // number of ticks this was in the new state
} debo_slot_t;
/** Debounce data array */
debo_slot_t debo_slots[DEBO_CHANNELS];
uint8_t debo_next_slot = 0;
/** Define a debounced pin (must be IO!) */
/** Add a pin for debouncing */
#define debo_add_rev(io) debo_register(&io2pin(io_pack(io)), io2n(io_pack(io)), 1)
#define debo_add(io) debo_register(&io2pin(io_pack(io)), io2n(io_pack(io)), 0)
uint8_t debo_register(PORT_P reg, uint8_t bit, bool invert)
{
debo_slots[debo_next_slot] = (debo_slot_t){
.reg = reg,
.bit = bit | ((invert & 1) << 7) | (get_bit_p(reg, bit) << 6), // bit 7 = invert, bit 6 = state
.count = 0,
};
return debo_next_slot++;
}
/** Add a pin for debouncing (low level function) */
uint8_t debo_register(PORT_P pin_reg_pointer, uint8_t bit, bool invert);
/** Check debounced pins, should be called periodically. */
void debo_tick()
{
for (uint8_t i = 0; i < debo_next_slot; i++) {
// current pin value (right 3 bits, xored with inverse bit)
bool value = get_bit_p(debo_slots[i].reg, debo_slots[i].bit & 0x7);
if (value != get_bit(debo_slots[i].bit, 6)) {
// different pin state than last recorded state
if (debo_slots[i].count < DEBO_TICKS) {
debo_slots[i].count++;
} else {
// overflown -> latch value
set_bit(debo_slots[i].bit, 6, value); // set state bit
debo_slots[i].count = 0;
}
} else {
debo_slots[i].count = 0; // reset the counter
}
}
}
void debo_tick();
/** Get a value of debounced pin */
#define debo_get_pin(i) (get_bit(debo_slots[i].bit, 6) ^ get_bit(debo_slots[i].bit, 7))

@ -0,0 +1,76 @@
#include <stdlib.h>
#include <stdint.h>
#include "colors.h"
#include "hsl.h"
// based on: https://github.com/lewisd32/avr-hsl2rgb
xrgb_t hsl2xrgb(const hsl_t cc)
{
// 0 .. 256*3
const uint16_t hh = (uint16_t) cc.h * 3;
const uint8_t hue_mod = hh % 256;
uint8_t r_temp, g_temp, b_temp;
if (hh < 256) {
r_temp = hue_mod ^ 255;
g_temp = hue_mod;
b_temp = 0;
} else if (hh < 512) {
r_temp = 0;
g_temp = hue_mod ^ 255;
b_temp = hue_mod;
} else if (hh < 768) {
r_temp = hue_mod;
g_temp = 0;
b_temp = hue_mod ^ 255;
} else {
r_temp = 0;
g_temp = 0;
b_temp = 0;
}
const uint8_t inverse_sat = (cc.s ^ 255);
xrgb_t rgb;
uint8_t t8;
uint16_t t16;
#ifdef HSL_LINEAR
const uint8_t bri = FADE_128[cc.l>>1];
#else
const uint8_t bri = cc.l;
#endif
t8 = r_temp;
t16 = t8 * cc.s + t8;
t16 = t16 + t8;
t8 = t16 >> 8;
t8 = t8 + inverse_sat;
t16 = t8 * bri;
t16 = t16 + t8;
t8 = t16 >> 8;
rgb.r = t8;
t8 = g_temp;
t16 = t8 * cc.s;
t16 = t16 + t8;
t8 = t16 >> 8;
t8 = t8 + inverse_sat;
t16 = t8 * bri;
t16 = t16 + t8;
t8 = t16 >> 8;
rgb.g = t8;
t8 = b_temp;
t16 = t8 * cc.s;
t16 = t16 + t8;
t8 = t16 >> 8;
t8 = t8 + inverse_sat;
t16 = t8 * bri;
t16 = t16 + t8;
t8 = t16 >> 8;
rgb.b = t8;
return rgb;
}

@ -0,0 +1,22 @@
#pragma once
/*
HSL support (addition to colors.h)
*/
#include "colors.h"
// Define HSL_LINEAR to get more linear brightness in hsl->rgb conversion
#ifdef HSL_LINEAR
# include "linear_fade.h"
#endif
// HSL data structure
typedef struct {
uint8_t h;
uint8_t s;
uint8_t l;
} hsl_t;
/* Convert HSL to XRGB */
xrgb_t hsl2xrgb(const hsl_t color);

@ -0,0 +1,284 @@
#include <stdbool.h>
#include <stdint.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include "calc.h"
#include "pins.h"
#include "nsdelay.h"
#include "lcd.h"
#include "lcd_config.h"
// Start address of rows
const uint8_t LCD_ROW_ADDR[] = {0x00, 0x40, 0x14, 0x54};
// Internal prototypes
void _lcd_mode_r();
void _lcd_mode_w();
void _lcd_clk();
void _lcd_wait_bf();
void _lcd_write_byte(uint8_t bb);
uint8_t _lcd_read_byte();
// Write utilities
#define _lcd_write_low(bb) _lcd_write_nibble((bb) & 0x0F)
#define _lcd_write_high(bb) _lcd_write_nibble(((bb) & 0xF0) >> 4)
#define _lcd_write_nibble(nib) do { \
write_pin(LCD_D7, get_bit((nib), 3)); \
write_pin(LCD_D6, get_bit((nib), 2)); \
write_pin(LCD_D5, get_bit((nib), 1)); \
write_pin(LCD_D4, get_bit((nib), 0)); \
} while(0)
// 0 W, 1 R
bool _lcd_mode;
/** Initialize the display */
void lcd_init()
{
// configure pins as output
as_output(LCD_E);
as_output(LCD_RW);
as_output(LCD_RS);
_lcd_mode = 1; // force data pins to output
_lcd_mode_w();
// Magic sequence to invoke Cthulhu (or enter 4-bit mode)
_delay_ms(16);
_lcd_write_nibble(0b0011);
_lcd_clk();
_delay_ms(5);
_lcd_clk();
_delay_ms(5);
_lcd_clk();
_delay_ms(5);
_lcd_write_nibble(0b0010);
_lcd_clk();
_delay_us(100);
// Configure the display
lcd_write_command(LCD_IFACE_4BIT_2LINE);
lcd_write_command(LCD_DISABLE);
lcd_write_command(LCD_CLEAR);
lcd_write_command(LCD_MODE_INC);
// mark as enabled
lcd_enable();
}
/** Send a pulse on the ENABLE line */
void _lcd_clk()
{
pin_up(LCD_E);
delay_ns(420);
pin_down(LCD_E);
}
/** Enter READ mode */
void _lcd_mode_r()
{
if (_lcd_mode == 1) return; // already in R mode
pin_up(LCD_RW);
as_input_pu(LCD_D7);
as_input_pu(LCD_D6);
as_input_pu(LCD_D5);
as_input_pu(LCD_D4);
_lcd_mode = 1;
}
/** Enter WRITE mode */
void _lcd_mode_w()
{
if (_lcd_mode == 0) return; // already in W mode
pin_down(LCD_RW);
as_output(LCD_D7);
as_output(LCD_D6);
as_output(LCD_D5);
as_output(LCD_D4);
_lcd_mode = 0;
}
/** Read a byte */
uint8_t _lcd_read_byte()
{
_lcd_mode_r();
uint8_t res = 0;
_lcd_clk();
res = (read_pin(LCD_D7) << 7) | (read_pin(LCD_D6) << 6) | (read_pin(LCD_D5) << 5) | (read_pin(LCD_D4) << 4);
_lcd_clk();
res |= (read_pin(LCD_D7) << 3) | (read_pin(LCD_D6) << 2) | (read_pin(LCD_D5) << 1) | (read_pin(LCD_D4) << 0);
return res;
}
/** Write an instruction byte */
void lcd_write_command(uint8_t bb)
{
_lcd_wait_bf();
pin_down(LCD_RS); // select instruction register
_lcd_write_byte(bb); // send instruction byte
}
/** Write a data byte */
void lcd_write_data(uint8_t bb)
{
_lcd_wait_bf();
pin_up(LCD_RS); // select data register
_lcd_write_byte(bb); // send data byte
}
/** Read BF & Address */
uint8_t lcd_read_bf_addr()
{
pin_down(LCD_RS);
return _lcd_read_byte();
}
/** Read CGRAM or DDRAM */
uint8_t lcd_read_ram()
{
pin_up(LCD_RS);
return _lcd_read_byte();
}
/** Write a byte using the 8-bit interface */
void _lcd_write_byte(uint8_t bb)
{
_lcd_mode_w(); // enter W mode
_lcd_write_high(bb);
_lcd_clk();
_lcd_write_low(bb);
_lcd_clk();
}
/** Wait until the device is ready */
void _lcd_wait_bf()
{
uint8_t d = 0;
while(d++ < 120 && lcd_read_bf_addr() & _BV(7))
_delay_us(1);
}
/** Send a string to LCD */
void lcd_str(char* str_p)
{
while (*str_p)
lcd_char(*str_p++);
}
/** Sedn a char to LCD */
void lcd_char(const char c)
{
lcd_write_data(c);
}
/** Set cursor position */
void lcd_xy(const uint8_t x, const uint8_t y)
{
lcd_set_addr(LCD_ROW_ADDR[y] + (x));
}
uint8_t _lcd_old_cursor = CURSOR_NONE;
bool _lcd_enabled = false;
/** Set LCD cursor. If not enabled, only remember it. */
void lcd_cursor(uint8_t type)
{
_lcd_old_cursor = (type & CURSOR_BOTH);
if (_lcd_enabled) lcd_write_command(LCD_CURSOR_NONE | _lcd_old_cursor);
}
/** Display display (preserving cursor) */
void lcd_disable()
{
lcd_write_command(LCD_DISABLE);
_lcd_enabled = false;
}
/** Enable display (restoring cursor) */
void lcd_enable()
{
_lcd_enabled = true;
lcd_cursor(_lcd_old_cursor);
}
/** Go home */
void lcd_home()
{
lcd_write_command(LCD_HOME);
}
/** Clear the screen */
void lcd_clear()
{
lcd_write_command(LCD_CLEAR);
}
/** Define a glyph */
void lcd_define_glyph(const uint8_t index, const uint8_t* array)
{
lcd_set_addr_cgram(index * 8);
for (uint8_t i = 0; i < 8; ++i) {
lcd_write_data(array[i]);
}
}
/** Define a glyph */
void lcd_define_glyph_pgm(const uint8_t index, const uint8_t* array)
{
lcd_set_addr_cgram(index * 8);
for (uint8_t i = 0; i < 8; ++i) {
lcd_write_data(pgm_read_byte(&array[i]));
}
}
/** Set address in CGRAM */
void lcd_set_addr_cgram(const uint8_t acg)
{
lcd_write_command(0b01000000 | ((acg) & 0b00111111));
}
/** Set address in DDRAM */
void lcd_set_addr(const uint8_t add)
{
lcd_write_command(0b10000000 | ((add) & 0b01111111));
}

@ -1,32 +1,29 @@
#pragma once
#include <stdbool.h>
#include <stdint.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include "calc.h"
#include "pins.h"
#include "nsdelay.h"
/*
HD44780 LCD display driver - 4-bit mode
Required macros - pin settings (eg. B,3 or D,0)
LCD pins are configured using a file lcd_config.h, which you
have to add next to your main.c file.
Content can be something like this:
LCD_PIN_RS
LCD_PIN_RW
LCD_PIN_E
LCD_PIN_D7
LCD_PIN_D6
LCD_PIN_D5
LCD_PIN_D4
#pragma once
#include "lib/arduino_pins.h"
#define LCD_RS D10
#define LCD_RW D11
#define LCD_E D12
#define LCD_D4 D13
#define LCD_D5 D14
#define LCD_D6 D15
#define LCD_D7 D16
Define those before including the header file.
*/
// Commands for user
#include <stdint.h>
#include "lcd_config.h"
// Commands
// Clear screen (reset)
#define LCD_CLEAR 0b00000001
@ -71,323 +68,63 @@
#define LCD_IFACE_8BIT_2LINE 0b00111000
// Start address of rows
const uint8_t LCD_ROW_ADDR[] = {0x00, 0x40, 0x14, 0x54};
// prototypes
// --- PUBLIC API ---
/** Init the display */
void lcd_init();
/** Write a command */
void lcd_write_command(const uint8_t bb);
/** Write data byte */
void lcd_write_data(const uint8_t bb);
/** Read busy flag & address */
uint8_t lcd_read_bf_addr();
/** Read byte from ram */
uint8_t lcd_read_ram();
/** Show string */
void lcd_str(char* str);
/** Show string at X, Y */
#define lcd_str_xy(x, y, str_p) do { lcd_xy((x), (y)); lcd_str((str_p)); } while(0)
/** Show char */
void lcd_char(const char c);
/** Show char at X, Y */
#define lcd_char_xy(x, y, c) do { lcd_xy((x), (y)); lcd_char((c)); } while(0)
/** Move cursor to X, Y */
void lcd_xy(const uint8_t x, const uint8_t y);
/** Set address in CGRAM */
void lcd_set_addr_cgram(const uint8_t acg);
/** Set address in DDRAM */
void lcd_set_addr(const uint8_t add);
/** Go home */
void lcd_home();
/** Clear the screen */
void lcd_clear();
/** Set cursor */
#define CURSOR_NONE 0b00
#define CURSOR_BAR 0b10
#define CURSOR_BLINK 0b01
#define CURSOR_BOTH 0b11
void lcd_cursor(uint8_t type);
/** Disable / enable, preserving cursor */
void lcd_disable();
void lcd_enable();
/** Define a custom glyph */
void lcd_define_glyph(const uint8_t index, const uint8_t* array);
// Internals
void _lcd_mode_r();
void _lcd_mode_w();
void _lcd_clk();
void _lcd_wait_bf();
void _lcd_write_byte(uint8_t bb);
uint8_t _lcd_read_byte();
// Write utilities
#define _lcd_write_low(bb) _lcd_write_nibble((bb) & 0x0F)
#define _lcd_write_high(bb) _lcd_write_nibble(((bb) & 0xF0) >> 4)
#define _lcd_write_nibble(nib) do { \
write_pin(LCD_PIN_D7, get_bit((nib), 3)); \
write_pin(LCD_PIN_D6, get_bit((nib), 2)); \
write_pin(LCD_PIN_D5, get_bit((nib), 1)); \
write_pin(LCD_PIN_D4, get_bit((nib), 0)); \
} while(0)
// 0 W, 1 R
bool _lcd_mode;
/** Initialize the display */
void lcd_init()
{
// configure pins as output
as_output(LCD_PIN_E);
as_output(LCD_PIN_RW);
as_output(LCD_PIN_RS);
_lcd_mode = 1; // force data pins to output
_lcd_mode_w();
// Magic sequence to enter 4-bit mode
_delay_ms(16);
_lcd_write_nibble(0b0011);
_lcd_clk();
_delay_ms(5);
_lcd_clk();
_delay_ms(5);
_lcd_clk();
_delay_ms(5);
_lcd_write_nibble(0b0010);
_lcd_clk();
_delay_us(100);
// Configure the display
lcd_write_command(LCD_IFACE_4BIT_2LINE);
lcd_write_command(LCD_DISABLE);
lcd_write_command(LCD_CLEAR);
lcd_write_command(LCD_MODE_INC);
lcd_enable();
}
/** Send a pulse on the ENABLE line */
void _lcd_clk()
{
pin_up(LCD_PIN_E);
delay_ns(420);
pin_down(LCD_PIN_E);
}
/** Enter READ mode */
void _lcd_mode_r()
{
if (_lcd_mode == 1) return; // already in R mode
pin_up(LCD_PIN_RW);
as_input_pu(LCD_PIN_D7);
as_input_pu(LCD_PIN_D6);
as_input_pu(LCD_PIN_D5);
as_input_pu(LCD_PIN_D4);
_lcd_mode = 1;
}
/** Enter WRITE mode */
void _lcd_mode_w()
{
if (_lcd_mode == 0) return; // already in W mode
pin_down(LCD_PIN_RW);
as_output(LCD_PIN_D7);
as_output(LCD_PIN_D6);
as_output(LCD_PIN_D5);
as_output(LCD_PIN_D4);
_lcd_mode = 0;
}
/** Read a byte */
uint8_t _lcd_read_byte()
{
_lcd_mode_r();
uint8_t res = 0;
_lcd_clk();
res = (read_pin(LCD_PIN_D7) << 7) | (read_pin(LCD_PIN_D6) << 6) | (read_pin(LCD_PIN_D5) << 5) | (read_pin(LCD_PIN_D4) << 4);
_lcd_clk();
res |= (read_pin(LCD_PIN_D7) << 3) | (read_pin(LCD_PIN_D6) << 2) | (read_pin(LCD_PIN_D5) << 1) | (read_pin(LCD_PIN_D4) << 0);
return res;
}
void lcd_init();
/** Write an instruction byte */
void lcd_write_command(uint8_t bb)
{
_lcd_wait_bf();
pin_down(LCD_PIN_RS); // select instruction register
_lcd_write_byte(bb); // send instruction byte
}
void lcd_write_command(uint8_t bb);
/** Write a data byte */
void lcd_write_data(uint8_t bb)
{
_lcd_wait_bf();
pin_up(LCD_PIN_RS); // select data register
_lcd_write_byte(bb); // send data byte
}
void lcd_write_data(uint8_t bb);
/** Read BF & Address */
uint8_t lcd_read_bf_addr()
{
pin_down(LCD_PIN_RS);
return _lcd_read_byte();
}
uint8_t lcd_read_bf_addr();
/** Read CGRAM or DDRAM */
uint8_t lcd_read_ram()
{
pin_up(LCD_PIN_RS);
return _lcd_read_byte();
}
/** Write a byte using the 8-bit interface */
void _lcd_write_byte(uint8_t bb)
{
_lcd_mode_w(); // enter W mode
_lcd_write_high(bb);
_lcd_clk();
_lcd_write_low(bb);
_lcd_clk();
}
/** Wait until the device is ready */
void _lcd_wait_bf()
{
uint8_t d = 0;
while(d++ < 120 && lcd_read_bf_addr() & _BV(7))
_delay_us(1);
}
uint8_t lcd_read_ram();
/** Send a string to LCD */
void lcd_str(char* str_p)
{
while (*str_p)
lcd_char(*str_p++);
}
void lcd_str(char* str_p);
/** Sedn a char to LCD */
void lcd_char(const char c)
{
lcd_write_data(c);
}
void lcd_char(const char c);
/** Set cursor position */
void lcd_xy(const uint8_t x, const uint8_t y)
{
lcd_set_addr(LCD_ROW_ADDR[y] + (x));
}
/** Show string at X, Y */
#define lcd_str_xy(x, y, str_p) do { lcd_xy((x), (y)); lcd_str((str_p)); } while(0)
/** Show char at X, Y */
#define lcd_char_xy(x, y, c) do { lcd_xy((x), (y)); lcd_char((c)); } while(0)
uint8_t _lcd_old_cursor = CURSOR_NONE;
bool _lcd_enabled = false;
/** Set cursor position */
void lcd_xy(const uint8_t x, const uint8_t y);
/** Set LCD cursor. If not enabled, only remember it. */
void lcd_cursor(uint8_t type)
{
_lcd_old_cursor = (type & CURSOR_BOTH);
if (_lcd_enabled) lcd_write_command(LCD_CURSOR_NONE | _lcd_old_cursor);
}
#define CURSOR_NONE 0b00
#define CURSOR_BAR 0b10
#define CURSOR_BLINK 0b01
#define CURSOR_BOTH 0b11
void lcd_cursor(uint8_t type);
/** Display display (preserving cursor) */
void lcd_disable()
{
lcd_write_command(LCD_DISABLE);
_lcd_enabled = false;
}
void lcd_disable();
/** Enable display (restoring cursor) */
void lcd_enable()
{
_lcd_enabled = true;
lcd_cursor(_lcd_old_cursor);
}
void lcd_enable();
/** Go home */
void lcd_home()
{
lcd_write_command(LCD_HOME);
}
void lcd_home();
/** Clear the screen */
void lcd_clear()
{
lcd_write_command(LCD_CLEAR);
}
void lcd_clear();
/** Define a glyph */
void lcd_define_glyph(const uint8_t index, const uint8_t* array)
{
lcd_set_addr_cgram(index * 8);
for (uint8_t i = 0; i < 8; ++i) {
lcd_write_data(array[i]);
}
}
void lcd_define_glyph(const uint8_t index, const uint8_t* array);
/** Define a glyph */
void lcd_define_glyph_pgm(const uint8_t index, const uint8_t* array)
{
lcd_set_addr_cgram(index * 8);
for (uint8_t i = 0; i < 8; ++i) {
lcd_write_data(pgm_read_byte(&array[i]));
}
}
void lcd_define_glyph_pgm(const uint8_t index, const uint8_t* array);
/** Set address in CGRAM */
void lcd_set_addr_cgram(const uint8_t acg)
{
lcd_write_command(0b01000000 | ((acg) & 0b00111111));
}
void lcd_set_addr_cgram(const uint8_t acg);
/** Set address in DDRAM */
void lcd_set_addr(const uint8_t add)
{
lcd_write_command(0b10000000 | ((add) & 0b01111111));
}
void lcd_set_addr(const uint8_t add);

@ -0,0 +1,13 @@
#pragma once
#include <stdint.h>
const uint8_t FADE_128[] = {
0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4,
5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 10, 11, 12, 13, 14,
14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 34, 35, 36,
38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 58, 59, 61, 63,
65, 67, 68, 69, 71, 72, 74, 76, 78, 80, 82, 85, 88, 90, 92, 95, 98, 100,
103, 106, 109, 112, 116, 119, 122, 125, 129, 134, 138, 142, 147, 151,
153, 156, 160, 163, 165, 170, 175, 180, 185, 190, 195, 200, 207, 214, 218,
221, 225, 228, 232, 234, 241, 248, 254, 255
};

@ -1,31 +0,0 @@
#pragma once
/**
Ye Olde Control Structures
*/
#include "loops.h"
#define whilst(what) while((what))
#define when(what) if((what))
#define otherwise else
#define commence {
#define then {
#define cease }
#define choose(what) switch((what))
#define option case
#define shatter break
#define replay continue
#define equals ==
#define is ==
#define be =
#define over >
#define above >
#define under <
#define below <
#define let /**/
#define raise(what) (what)++
#define number int
#warning "This is a joke. Do not use YeOlde.h in serious code!"

@ -1,166 +0,0 @@
MCU = atmega328p
F_CPU = 16000000
LFUSE = 0xFF
HFUSE = 0xDE
EFUSE = 0x05
MAIN = main.c
## If you've split your program into multiple files,
## include the additional .c source (in same directory) here
## (and include the .h files in your foo.c)
LOCAL_SOURCE =
## Here you can link to one more directory (and multiple .c files)
# EXTRA_SOURCE_DIR = ../AVR-Programming-Library/
EXTRA_SOURCE_DIR =
EXTRA_SOURCE_FILES =
##########------------------------------------------------------##########
########## Programmer Defaults ##########
########## Set up once, then forget about it ##########
########## (Can override. See bottom of file.) ##########
##########------------------------------------------------------##########
#19200
PROGRAMMER_TYPE = arduino
PROGRAMMER_ARGS = -b 57600 -P /dev/ttyUSB0
##########------------------------------------------------------##########
########## Makefile Magic! ##########
########## Summary: ##########
########## We want a .hex file ##########
########## Compile source files into .elf ##########
########## Convert .elf file into .hex ##########
########## You shouldn't need to edit below. ##########
##########------------------------------------------------------##########
## Defined programs / locations
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
AVRSIZE = avr-size
AVRDUDE = avrdude
## Compilation options, type man avr-gcc if you're curious.
CFLAGS = -std=gnu99 -mmcu=$(MCU) -DF_CPU=$(F_CPU)UL -I. -I$(EXTRA_SOURCE_DIR)
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
CFLAGS += -Wall -Wno-main -Wno-strict-prototypes -Wno-comment
CFLAGS += -g2 -Wextra -pedantic -Wfatal-errors
CFLAGS += -ffunction-sections -fdata-sections -Wl,--gc-sections -Wl,--relax
CFLAGS_BUILD = $(CFLAGS) -Os
# CFLAGS += -lm
## CFLAGS += -Wl,-u,vfprintf -lprintf_flt -lm ## for floating-point printf
## CFLAGS += -Wl,-u,vfprintf -lprintf_min ## for smaller printf
## Lump target and extra source files together
TARGET = $(strip $(basename $(MAIN)))
SRC1 = $(TARGET).c
SRC = $(SRC1)
EXTRA_SOURCE = $(addprefix $(EXTRA_SOURCE_DIR), $(EXTRA_SOURCE_FILES))
SRC += $(EXTRA_SOURCE)
SRC += $(LOCAL_SOURCE)
## List of all header files
HEADERS = $(SRC:.c=.h)
## For every .c file, compile an .o object file
OBJ = $(SRC:.c=.o)
## Generic Makefile targets. (Only .hex file is necessary)
all: $(TARGET).hex size
pre: $(TARGET).pre
%.hex: %.elf
$(OBJCOPY) -R .eeprom -O ihex $< $@
%.elf: $(SRC)
$(CC) $(CFLAGS_BUILD) $(SRC) --output $@
%.pre: $(SRC1)
$(CC) $(CFLAGS) -E $(SRC1) --output $@
%.eeprom: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@
debug:
@echo
@echo "Source files:" $(SRC)
@echo "MCU, F_CPU, BAUD:" $(MCU), $(F_CPU), $(BAUD)
@echo
# Optionally create listing file from .elf
# This creates approximate assembly-language equivalent of your code.
# Useful for debugging time-sensitive bits,
# or making sure the compiler does what you want.
disassemble: $(TARGET).lst
dis: disassemble
lst: disassemble
eeprom: $(TARGET).eeprom
%.lst: %.elf
$(OBJDUMP) -S $< > $@
# Optionally show how big the resulting program is
size: $(TARGET).elf
$(AVRSIZE) -C --mcu=$(MCU) $(TARGET).elf
clean:
rm -f $(TARGET).elf $(TARGET).hex $(TARGET).obj \
$(TARGET).o $(TARGET).d $(TARGET).eep $(TARGET).lst \
$(TARGET).lss $(TARGET).sym $(TARGET).map $(TARGET)~ \
$(TARGET).eeprom
squeaky_clean:
rm -f *.elf *.hex *.obj *.o *.d *.eep *.lst *.lss *.sym *.map *~
##########------------------------------------------------------##########
########## Programmer-specific details ##########
########## Flashing code to AVR using avrdude ##########
##########------------------------------------------------------##########
flash: $(TARGET).hex
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U flash:w:$<
flash_eeprom: $(TARGET).eeprom
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U eeprom:w:$<
terminal:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nt
flash_arduino: PROGRAMMER_TYPE = arduino
flash_arduino: PROGRAMMER_ARGS =
flash_arduino: flash
flash_dragon_isp: PROGRAMMER_TYPE = dragon_isp
flash_dragon_isp: PROGRAMMER_ARGS =
flash_dragon_isp: flash
##########------------------------------------------------------##########
########## Fuse settings and suitable defaults ##########
##########------------------------------------------------------##########
## Generic
FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
fuses:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) \
$(PROGRAMMER_ARGS) $(FUSE_STRING)
show_fuses:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nv
## Called with no extra definitions, sets to defaults
set_default_fuses: FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
set_default_fuses: fuses

@ -1 +0,0 @@
/home/ondra/devel/avr/avr-projects/devel/lib

@ -1,139 +0,0 @@
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdint.h>
#include <stdlib.h>
#include "lib/meta.h"
#include "lib/arduino_pins.h"
#include "lib/calc.h"
#include "lib/colors.h"
#include "lib/adc.h"
#define WS_T_1H 800
#define WS_T_1L 400
#define WS_T_0H 120
#define WS_T_0L 900
#include "lib/ws_rgb.h"
#define WS1 D2
typedef struct {
uint8_t h;
uint8_t s;
uint8_t l;
} hsl_t;
// based on: https://github.com/lewisd32/avr-hsl2rgb
xrgb_t hsl2rgb(const hsl_t cc)
{
// 0 .. 256*3
const uint16_t hh = (uint16_t) cc.h * 3;
const uint8_t hue_mod = hh % 256;
uint8_t r_temp, g_temp, b_temp;
if (hh < 256) {
r_temp = hue_mod ^ 255;
g_temp = hue_mod;
b_temp = 0;
} else if (hh < 512) {
r_temp = 0;
g_temp = hue_mod ^ 255;
b_temp = hue_mod;
} else if (hh < 768) {
r_temp = hue_mod;
g_temp = 0;
b_temp = hue_mod ^ 255;
} else {
r_temp = 0;
g_temp = 0;
b_temp = 0;
}
const uint8_t inverse_sat = (cc.s ^ 255);
xrgb_t rgb;
uint8_t t8;
uint16_t t16;
t8 = r_temp;
t16 = t8 * cc.s + t8;
t16 = t16 + t8;
t8 = t16 >> 8;
t8 = t8 + inverse_sat;
t16 = t8 * cc.l;
t16 = t16 + t8;
t8 = t16 >> 8;
rgb.r = t8;
t8 = g_temp;
t16 = t8 * cc.s;
t16 = t16 + t8;
t8 = t16 >> 8;
t8 = t8 + inverse_sat;
t16 = t8 * cc.l;
t16 = t16 + t8;
t8 = t16 >> 8;
rgb.g = t8;
t8 = b_temp;
t16 = t8 * cc.s;
t16 = t16 + t8;
t8 = t16 >> 8;
t8 = t8 + inverse_sat;
t16 = t8 * cc.l;
t16 = t16 + t8;
t8 = t16 >> 8;
rgb.b = t8;
return rgb;
}
void SECTION(".init8") init()
{
adc_init();
srand(adc_read_word(0));
as_output(WS1);
}
void main()
{
#define SIZE 7
hsl_t board[SIZE];
xrgb_t screen[SIZE];
for (uint8_t i = 0; i < SIZE; i++) {
board[i] = (hsl_t) {.h=0, .s=255, .l=0};
screen[i] = (xrgb_t) {.r=0, .g=0, .b=0};
}
while(1) {
for(uint8_t i = 0; i < SIZE; i++) {
if (board[i].l > 0) {
board[i].l--;
}
screen[i] = hsl2rgb(board[i]);
}
if (rand() % 200 == 0) {
uint8_t i = rand() % SIZE;
if (board[i].l == 0) {
board[i].h = rand() % 256;
board[i].s = 200 + rand() % 56;
board[i].l = 255;
}
}
ws_send_xrgb_array(WS1, screen, SIZE);
_delay_ms(10);
}
}

@ -1,166 +0,0 @@
MCU = atmega328p
F_CPU = 16000000
LFUSE = 0xFF
HFUSE = 0xDE
EFUSE = 0x05
MAIN = main.c
## If you've split your program into multiple files,
## include the additional .c source (in same directory) here
## (and include the .h files in your foo.c)
LOCAL_SOURCE =
## Here you can link to one more directory (and multiple .c files)
# EXTRA_SOURCE_DIR = ../AVR-Programming-Library/
EXTRA_SOURCE_DIR =
EXTRA_SOURCE_FILES =
##########------------------------------------------------------##########
########## Programmer Defaults ##########
########## Set up once, then forget about it ##########
########## (Can override. See bottom of file.) ##########
##########------------------------------------------------------##########
#19200
PROGRAMMER_TYPE = arduino