parent
feb4e55bbd
commit
ae09fca518
@ -0,0 +1,166 @@ |
||||
|
||||
MCU = atmega328p
|
||||
|
||||
F_CPU = 16000000
|
||||
|
||||
LFUSE = 0xFF
|
||||
HFUSE = 0xDE
|
||||
EFUSE = 0x05
|
||||
|
||||
MAIN = main.c
|
||||
|
||||
## If you've split your program into multiple files,
|
||||
## include the additional .c source (in same directory) here
|
||||
## (and include the .h files in your foo.c)
|
||||
LOCAL_SOURCE =
|
||||
|
||||
## Here you can link to one more directory (and multiple .c files)
|
||||
# EXTRA_SOURCE_DIR = ../AVR-Programming-Library/
|
||||
EXTRA_SOURCE_DIR =
|
||||
EXTRA_SOURCE_FILES =
|
||||
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Programmer Defaults ##########
|
||||
########## Set up once, then forget about it ##########
|
||||
########## (Can override. See bottom of file.) ##########
|
||||
##########------------------------------------------------------##########
|
||||
#19200
|
||||
PROGRAMMER_TYPE = arduino
|
||||
PROGRAMMER_ARGS = -b 57600 -P /dev/ttyUSB0
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Makefile Magic! ##########
|
||||
########## Summary: ##########
|
||||
########## We want a .hex file ##########
|
||||
########## Compile source files into .elf ##########
|
||||
########## Convert .elf file into .hex ##########
|
||||
########## You shouldn't need to edit below. ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
## Defined programs / locations
|
||||
CC = avr-gcc
|
||||
OBJCOPY = avr-objcopy
|
||||
OBJDUMP = avr-objdump
|
||||
AVRSIZE = avr-size
|
||||
AVRDUDE = sudo avrdude
|
||||
|
||||
## Compilation options, type man avr-gcc if you're curious.
|
||||
CFLAGS = -std=gnu99 -mmcu=$(MCU) -DF_CPU=$(F_CPU)UL -I. -I$(EXTRA_SOURCE_DIR)
|
||||
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
|
||||
CFLAGS += -Wall -Wno-main -Wno-strict-prototypes -Wno-comment
|
||||
CFLAGS += -g2 -Wextra -pedantic -Wfatal-errors
|
||||
CFLAGS += -ffunction-sections -fdata-sections -Wl,--gc-sections -Wl,--relax
|
||||
|
||||
CFLAGS_BUILD = $(CFLAGS) -Os
|
||||
|
||||
# CFLAGS += -lm
|
||||
## CFLAGS += -Wl,-u,vfprintf -lprintf_flt -lm ## for floating-point printf
|
||||
## CFLAGS += -Wl,-u,vfprintf -lprintf_min ## for smaller printf
|
||||
|
||||
## Lump target and extra source files together
|
||||
TARGET = $(strip $(basename $(MAIN)))
|
||||
SRC1 = $(TARGET).c
|
||||
SRC = $(SRC1)
|
||||
EXTRA_SOURCE = $(addprefix $(EXTRA_SOURCE_DIR), $(EXTRA_SOURCE_FILES))
|
||||
SRC += $(EXTRA_SOURCE)
|
||||
SRC += $(LOCAL_SOURCE)
|
||||
|
||||
## List of all header files
|
||||
HEADERS = $(SRC:.c=.h)
|
||||
|
||||
## For every .c file, compile an .o object file
|
||||
OBJ = $(SRC:.c=.o)
|
||||
|
||||
## Generic Makefile targets. (Only .hex file is necessary)
|
||||
all: $(TARGET).hex size |
||||
pre: $(TARGET).pre |
||||
|
||||
%.hex: %.elf |
||||
$(OBJCOPY) -R .eeprom -O ihex $< $@
|
||||
|
||||
%.elf: $(SRC) |
||||
$(CC) $(CFLAGS_BUILD) $(SRC) --output $@
|
||||
|
||||
%.pre: $(SRC1) |
||||
$(CC) $(CFLAGS) -E $(SRC1) --output $@
|
||||
|
||||
%.eeprom: %.elf |
||||
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@
|
||||
|
||||
debug: |
||||
@echo
|
||||
@echo "Source files:" $(SRC)
|
||||
@echo "MCU, F_CPU, BAUD:" $(MCU), $(F_CPU), $(BAUD)
|
||||
@echo
|
||||
|
||||
# Optionally create listing file from .elf
|
||||
# This creates approximate assembly-language equivalent of your code.
|
||||
# Useful for debugging time-sensitive bits,
|
||||
# or making sure the compiler does what you want.
|
||||
disassemble: $(TARGET).lst |
||||
|
||||
dis: disassemble |
||||
lst: disassemble |
||||
|
||||
eeprom: $(TARGET).eeprom |
||||
|
||||
%.lst: %.elf |
||||
$(OBJDUMP) -S $< > $@
|
||||
|
||||
# Optionally show how big the resulting program is
|
||||
size: $(TARGET).elf |
||||
$(AVRSIZE) -C --mcu=$(MCU) $(TARGET).elf
|
||||
|
||||
clean: |
||||
rm -f $(TARGET).elf $(TARGET).hex $(TARGET).obj \
|
||||
$(TARGET).o $(TARGET).d $(TARGET).eep $(TARGET).lst \
|
||||
$(TARGET).lss $(TARGET).sym $(TARGET).map $(TARGET)~ \
|
||||
$(TARGET).eeprom
|
||||
|
||||
squeaky_clean: |
||||
rm -f *.elf *.hex *.obj *.o *.d *.eep *.lst *.lss *.sym *.map *~
|
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Programmer-specific details ##########
|
||||
########## Flashing code to AVR using avrdude ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
flash: $(TARGET).hex |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U flash:w:$<
|
||||
|
||||
flash_eeprom: $(TARGET).eeprom |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U eeprom:w:$<
|
||||
|
||||
terminal: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nt
|
||||
|
||||
|
||||
flash_arduino: PROGRAMMER_TYPE = arduino |
||||
flash_arduino: PROGRAMMER_ARGS = |
||||
flash_arduino: flash |
||||
|
||||
flash_dragon_isp: PROGRAMMER_TYPE = dragon_isp |
||||
flash_dragon_isp: PROGRAMMER_ARGS = |
||||
flash_dragon_isp: flash |
||||
|
||||
|
||||
##########------------------------------------------------------##########
|
||||
########## Fuse settings and suitable defaults ##########
|
||||
##########------------------------------------------------------##########
|
||||
|
||||
## Generic
|
||||
FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
|
||||
|
||||
fuses: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) \
|
||||
$(PROGRAMMER_ARGS) $(FUSE_STRING)
|
||||
show_fuses: |
||||
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nv
|
||||
|
||||
## Called with no extra definitions, sets to defaults
|
||||
set_default_fuses: FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m |
||||
set_default_fuses: fuses |
@ -0,0 +1,7 @@ |
||||
Alive color wheel |
||||
================= |
||||
|
||||
This is an animation for WS2812B RGB strip with 72 LEDs, but can be adjusted to smaller. |
||||
|
||||
See video: [https://www.youtube.com/watch?v=pgHmZdYfbz8](https://www.youtube.com/watch?v=pgHmZdYfbz8) |
||||
|
@ -0,0 +1,42 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Pin definitions for Arduino (Pro Mini with ATmega328P) |
||||
*/ |
||||
|
||||
#include "pins.h" |
||||
|
||||
#define D0 D,0 |
||||
#define D1 D,1 |
||||
#define D2 D,2 |
||||
#define D3 D,3 |
||||
#define D4 D,4 |
||||
#define D5 D,5 |
||||
#define D6 D,6 |
||||
#define D7 D,7 |
||||
#define D8 B,0 |
||||
#define D9 B,1 |
||||
#define D10 B,2 |
||||
|
||||
// MOSI MISO SCK - not good for input
|
||||
#define D11 B,3 |
||||
#define D12 B,4 |
||||
#define D13 B,5 |
||||
|
||||
#define D14 C,0 |
||||
#define D15 C,1 |
||||
#define D16 C,2 |
||||
#define D17 C,3 |
||||
#define D18 C,4 |
||||
#define D19 C,5 |
||||
#define D20 C,6 |
||||
#define D21 C,7 |
||||
|
||||
#define A0 C,0 |
||||
#define A1 C,1 |
||||
#define A2 C,2 |
||||
#define A3 C,3 |
||||
#define A4 C,4 |
||||
#define A5 C,5 |
||||
#define A6 C,6 |
||||
#define A7 C,7 |
@ -0,0 +1,40 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
General purpose calculation and bit manipulation utilities. |
||||
*/ |
||||
|
||||
// if max, go to zero. Else increment.
|
||||
#define inc_wrap(var, min, max) do { if ((var) >= (max)) { (var)=min; } else { (var)++; } } while(0) |
||||
|
||||
// If zero, go to max. Else decrement,
|
||||
#define dec_wrap(var, min, max) do { if ((var) > min) { (var)--; } else { (var)=(max); } } while(0) |
||||
|
||||
// === general bit manipulation with register ===
|
||||
#define sbi(reg, bit) do { (reg) |= (1 << (uint8_t)(bit)); } while(0) |
||||
#define cbi(reg, bit) do { (reg) &= ~(1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
#define read_bit(reg, bit) ((((uint8_t)(reg)) >> (uint8_t)(bit)) & 0x1) |
||||
#define get_bit(reg, bit) read_bit(reg, bit) |
||||
|
||||
#define write_bit(reg, bit, value) do { (reg) = ((reg) & ~(1 << (uint8_t)(bit))) | (((uint8_t)(value) & 0x1) << (uint8_t)(bit)); } while(0) |
||||
#define set_bit(reg, bit, value) write_bit(reg, bit, value) |
||||
#define toggle_bit(reg, bit) do { (reg) ^= (1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
// general pin manipulation - with pointer to register
|
||||
#define sbi_p(reg_p, bit) do { (*(reg_p)) |= (1 << (uint8_t)(bit)); } while(0) |
||||
#define cbi_p(reg_p, bit) do { (*(reg_p)) &= ~(1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
#define read_bit_p(reg_p, bit) ((*(reg_p) >> (uint8_t)(bit)) & 0x1) |
||||
#define get_bit_p(reg_p, bit) read_bit_p(reg_p, bit) |
||||
|
||||
#define write_bit_p(reg_p, bit, value) do { *(reg_p) = (*(reg_p) & ~(1 << ((uint8_t)(bit) & 0x1))) | (((uint8_t)(value) & 0x1) << (uint8_t)(bit)); } while(0) |
||||
#define set_bit_p(reg, bit, value) write_bit_p(reg_p, bit, value) |
||||
#define toggle_bit_p(reg_p, bit) do { *(reg_p) ^= (1 << (uint8_t)(bit)); } while(0) |
||||
|
||||
|
||||
// Check if value is in range A..B or B..A
|
||||
#define in_range(x, low, high) (((low) < (high)) && ((x) > (low) && (x) < (high))) || (((low) > (high)) && ((x) < (low) || (x) > (high))) |
||||
|
||||
// Check if value is in range A..B. If B < A, matches all outside B..A
|
||||
#define in_range_wrap(x, low, high) (((low) < (high)) && ((x) > (low) && (x) < (high))) || (((low) > (high)) && ((x) > (low) || (x) < (high))) |
@ -0,0 +1,59 @@ |
||||
#pragma once |
||||
|
||||
/*
|
||||
Some useful utilities for RGB color manipulation |
||||
*/ |
||||
|
||||
typedef struct { |
||||
uint8_t r; |
||||
uint8_t g; |
||||
uint8_t b; |
||||
} xrgb_t; |
||||
|
||||
typedef uint32_t rgb24_t; |
||||
typedef uint16_t rgb16_t; |
||||
typedef uint16_t rgb12_t; |
||||
typedef uint8_t rgb6_t; |
||||
|
||||
|
||||
#define xrgb(rr, gg, bb) ((xrgb_t) { .r = ((uint8_t)(rr)), .g = ((uint8_t)(gg)), .b = ((uint8_t)(bb)) }) |
||||
#define xrgb_r(c) ((uint8_t)(c.r)) |
||||
#define xrgb_g(c) ((uint8_t)(c.g)) |
||||
#define xrgb_b(c) ((uint8_t)(c.b)) |
||||
#define xrgb_rgb24(c) ((((rgb24_t)c.r) << 16) | (((rgb24_t)c.g) << 8) | (((rgb24_t)c.b))) |
||||
#define xrgb_rgb15(c) (((((rgb15_t)c.r) & 0xF8) << 7) | ((((rgb15_t)c.g) & 0xF8) << 2) | ((((rgb15_t)c.b) & 0xF8) >> 3)) |
||||
#define xrgb_rgb12(c) (((((rgb12_t)c.r) & 0xF0) << 4) | ((((rgb12_t)c.g) & 0xF0)) | ((((rgb12_t)c.b) & 0xF0) >> 4)) |
||||
#define xrgb_rgb6(c) (((((rgb6_t)c.r) & 0xC0) >> 2) | ((((rgb6_t)c.g) & 0xC0) >> 4) | ((((rgb6_t)c.b) & 0xC0) >> 6)) |
||||
|
||||
|
||||
#define rgb24(r,g,b) ((rgb24_t) (((((rgb24_t)r) & 0xFF) << 16) | ((((rgb24_t)g) & 0xFF) << 8) | (((rgb24_t)b) & 0xFF))) |
||||
#define rgb24_r(c) ((((rgb24_t) (c)) >> 16) & 0xFF) |
||||
#define rgb24_g(c) ((((rgb24_t) (c)) >> 8) & 0xFF) |
||||
#define rgb24_b(c) ((((rgb24_t) (c)) >> 0) & 0xFF) |
||||
#define rgb24_xrgb(c) xrgb(rgb24_r(c), rgb24_g(c), rgb24_b(c)) |
||||
|
||||
|
||||
#define rgb15(r,g,b) ((rgb16_t) (((r & 0x1F) << 10) | ((g & 0x1F) << 5) | (b & 0x1F))) |
||||
#define rgb15_r(c) ((((rgb15_t) (c)) & 0x7C00) >> 7) |
||||
#define rgb15_g(c) ((((rgb15_t) (c)) & 0x3E0) >> 2) |
||||
#define rgb15_b(c) ((((rgb15_t) (c)) & 0x1F) << 3) |
||||
#define rgb15_xrgb(c) xrgb(rgb15_r(c), rgb15_g(c), rgb15_b(c)) |
||||
#define rgb15_rgb24(c) rgb24(rgb15_r(c), rgb15_g(c), rgb15_b(c)) |
||||
|
||||
|
||||
#define rgb12(r,g,b) ((rgb12_t) (((r & 0xF) << 8) | ((g & 0xF) << 4) | (b & 0xF))) |
||||
#define rgb12_r(c) ((((rgb12_t) (c)) & 0xF00) >> 4) |
||||
#define rgb12_g(c) (((rgb12_t) (c)) & 0xF0) |
||||
#define rgb12_b(c) (((r(rgb12_t) (c)gb) & 0x0F) << 4) |
||||
#define rgb12_xrgb(c) xrgb(rgb12_r(c), rgb12_g(c), rgb12_b(c)) |
||||
#define rgb12_rgb24(c) rgb24(rgb12_r(c), rgb12_g(c), rgb12_b(c)) |
||||
|
||||
|
||||
#define rgb6(r,g,b) ((rgb6_t) (((r & 3) << 4) | ((g & 3) << 2) | (b & 3))) |
||||
#define rgb6_r(c) ((((rgb6_t) (c)) & 0x30) << 2) |
||||
#define rgb6_g(c) ((((rgb6_t) (c)) & 0xC) << 4) |
||||
#define rgb6_b(c) ((((rgb6_t) (c)) & 0x3) << 6) |
||||
#define rgb6_xrgb(c) xrgb(rgb6_r(c), rgb6_g(c), rgb6_b(c)) |
||||
#define rgb6_rgb24(c) rgb24(rgb6_r(c), rgb6_g(c), rgb6_b(c)) |
||||
|
||||
#define add_xrgb(x, y) ((xrgb_t) { (((y).r > (255 - (x).r)) ? 255 : ((x).r + (y).r)), (((y).g > (255 - (x).g)) ? 255 : ((x).g + (y).g)), (((y).b > 255 - (x).b) ? 255 : ((x).b + (y).b)) }) |
@ -0,0 +1,104 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
An implementation of button debouncer. |
||||
|
||||
First, the system must be initialized - even before including: |
||||
|
||||
#define DEBO_CHANNELS 2 |
||||
#define DEBO_TICKS 5 |
||||
|
||||
#inclue "lib/debounce.h" |
||||
|
||||
A pin is registered like this: |
||||
|
||||
#define BTN1 B,0 |
||||
#define BTN2 B,1 |
||||
|
||||
debo_add(BTN0); // The function returns number assigned to the pin (0, 1, ...)
|
||||
debo_add_rev(BTN1); // active low
|
||||
debo_register(&PINB, PB2, 0); // direct access - register, pin & invert
|
||||
|
||||
Then periodically call the tick function (perhaps in a timer interrupt): |
||||
|
||||
debo_tick(); |
||||
|
||||
To check if input is active, use |
||||
|
||||
debo_get_pin(0); // state of input registered as #0
|
||||
debo_get_pin(1); // state of input registered as #1
|
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
#include <stdbool.h> |
||||
|
||||
#include "calc.h" |
||||
#include "pins.h" |
||||
|
||||
|
||||
// Number of pins to debounce
|
||||
#ifndef DEBO_CHANNELS |
||||
# error "DEBO_CHANNELS not defined!" |
||||
#endif |
||||
|
||||
#ifndef DEBO_TICKS |
||||
# warning "DEBO_TICKS not defined, defaulting to 5!" |
||||
# define DEBO_TICKS 5 |
||||
#endif |
||||
|
||||
|
||||
/* Internal deboucer entry */ |
||||
typedef struct { |
||||
PORT_P reg; |
||||
uint8_t bit; |
||||
uint8_t count; |
||||
} debo_slot_t; |
||||
|
||||
/** Debounce data array */ |
||||
debo_slot_t debo_slots[DEBO_CHANNELS]; |
||||
uint8_t debo_next_slot = 0; |
||||
|
||||
/** Define a debounced pin (must be IO!) */ |
||||
|
||||
#define debo_add_rev(io) debo_register(&io2pin(io_pack(io)), io2n(io_pack(io)), 1) |
||||
#define debo_add(io) debo_register(&io2pin(io_pack(io)), io2n(io_pack(io)), 0) |
||||
|
||||
uint8_t debo_register(PORT_P reg, uint8_t bit, bool invert) |
||||
{ |
||||
debo_slots[debo_next_slot] = (debo_slot_t){ |
||||
.reg = reg, |
||||
.bit = bit | ((invert & 1) << 7) | (get_bit_p(reg, bit) << 6), // bit 7 = invert, bit 6 = state
|
||||
.count = 0, |
||||
}; |
||||
|
||||
return debo_next_slot++; |
||||
} |
||||
|
||||
|
||||
/** Check debounced pins, should be called periodically. */ |
||||
void debo_tick() |
||||
{ |
||||
for (uint8_t i = 0; i < debo_next_slot; i++) { |
||||
// current pin value (right 3 bits, xored with inverse bit)
|
||||
bool value = get_bit_p(debo_slots[i].reg, debo_slots[i].bit & 0x7); |
||||
|
||||
if (value != get_bit(debo_slots[i].bit, 6)) { |
||||
|
||||
// different pin state than last recorded state
|
||||
if (debo_slots[i].count < DEBO_TICKS) { |
||||
debo_slots[i].count++; |
||||
} else { |
||||
// overflown -> latch value
|
||||
set_bit(debo_slots[i].bit, 6, value); // set state bit
|
||||
debo_slots[i].count = 0; |
||||
} |
||||
} else { |
||||
debo_slots[i].count = 0; // reset the counter
|
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
/** Get a value of debounced pin */ |
||||
#define debo_get_pin(i) (get_bit(debo_slots[i].bit, 6) ^ get_bit(debo_slots[i].bit, 7)) |
||||
//(get_bit(debo_slots[i].bit, 6) ^ get_bit(debo_slots[i].bit, 7))
|
@ -0,0 +1,6 @@ |
||||
#pragma once |
||||
|
||||
/** Weird constructs for the compiler */ |
||||
|
||||
// general macros
|
||||
#define SECTION(pos) __attribute__((naked, used, section(pos))) |
@ -0,0 +1,18 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Functions for precise delays (nanoseconds / cycles) |
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
#include <util/delay_basic.h> |
||||
#include <stdint.h> |
||||
|
||||
/* Convert nanoseconds to cycle count */ |
||||
#define ns2cycles(ns) ( (ns) / (1000000000L / (signed long) F_CPU) ) |
||||
|
||||
/** Wait c cycles */ |
||||
#define delay_c(c) (((c) > 0) ? __builtin_avr_delay_cycles(c) : __builtin_avr_delay_cycles(0)) |
||||
|
||||
/** Wait n nanoseconds, plus c cycles */ |
||||
#define delay_ns_c(ns, c) delay_c(ns2cycles(ns) + (c)) |
@ -0,0 +1,107 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
This file provides macros for pin manipulation. |
||||
|
||||
You can define your application pins like so: |
||||
|
||||
// Led at PORTB, pin 1
|
||||
#define LED B,1 |
||||
|
||||
// Switch at PORTD, pin 7
|
||||
#define SW1 D,7 |
||||
|
||||
Now you can use macros from this file to wirh with the pins, eg: |
||||
|
||||
as_output(LED); |
||||
as_input(SW1); |
||||
pullup_on(SW1); |
||||
|
||||
toggle_pin(LED); |
||||
while (pin_is_low(SW1)); |
||||
|
||||
- The macros io2XXX() can be used to get literal name of register associated with the pin. |
||||
- io2n() provides pin number. |
||||
- The XXX_aux() macros are internal and should not be used elsewhere. |
||||
- The io_pack() macro is used to pass pin (io) to other macro without expanding it. |
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
#include "calc.h" |
||||
|
||||
|
||||
// Get particular register associated with the name X (eg. D -> PORTD)
|
||||
#define reg_ddr(X) DDR ## X |
||||
#define reg_port(X) PORT ## X |
||||
#define reg_pin(X) PIN ## X |
||||
|
||||
#define io2ddr_aux(reg, bit) reg_ddr(reg) |
||||
#define io2ddr(io) io2ddr_aux(io) |
||||
#define io2port_aux(reg, bit) reg_port(reg) |
||||
#define io2port(io) io2port_aux(io) |
||||
#define io2pin_aux(reg, bit) reg_pin(reg) |
||||
#define io2pin(io) io2pin_aux(io) |
||||
#define io2n_aux(reg, bit) bit |
||||
#define io2n(io) io2n_aux(io) |
||||
|
||||
#define io_pack(port, bit) port, bit |
||||
|
||||
|
||||
// pointer to port
|
||||
typedef volatile uint8_t* PORT_P; |
||||
// number of bit in port
|
||||
typedef uint8_t BIT_N; |
||||
|
||||
|
||||
// === pin manipulation ===
|
||||
#define set_pin_aux(port, bit) sbi(reg_port(port), (bit)) |
||||
#define clear_pin_aux(port, bit) cbi(reg_port(port), (bit)) |
||||
#define read_pin_aux(port, bit) get_bit(reg_pin(port), (bit)) |
||||
#define write_pin_aux(port, bit, value) set_bit(reg_port(port), (bit), (value)) |
||||
#define toggle_pin_aux(port, bit) sbi(reg_pin(port), (bit)) |
||||
|
||||
|
||||
#define pin_up(io) set_pin_aux(io) |
||||
#define pin_high(io) set_pin_aux(io) |
||||
|
||||
#define pin_down(io) clear_pin_aux(io) |
||||
#define pin_low(io) clear_pin_aux(io) |
||||
|
||||
#define get_pin(io) read_pin_aux(io) |
||||
#define read_pin(io) read_pin_aux(io) |
||||
|
||||
#define pin_is_low(io) !read_pin_aux(io) |
||||
#define pin_is_high(io) read_pin_aux(io) |
||||
|
||||
#define set_pin(io, value) write_pin_aux(io, (value)) |
||||
#define write_pin(io, value) write_pin_aux(io, (value)) |
||||
#define toggle_pin(io) toggle_pin_aux(io) |
||||
|
||||
|
||||
|
||||
// setting pin direction
|
||||
#define as_input_aux(port, bit) cbi(reg_ddr(port), (bit)) |
||||
#define as_output_aux(port, bit) sbi(reg_ddr(port), (bit)) |
||||
#define set_dir_aux(port, bit, dir) write_bit(reg_ddr(port), (bit), (dir)) |
||||
|
||||
|
||||
#define as_input(io) as_input_aux(io) |
||||
#define as_input_pu(io) do { as_input_aux(io); pullup_enable_aux(io); } while(0) |
||||
|
||||
#define as_output(io) as_output_aux(io) |
||||
#define set_dir(io, dir) set_dir_aux(io, (dir)) |
||||
|
||||
|
||||
// setting pullup
|
||||
#define pullup_enable_aux(port, bit) sbi(reg_port(port), (bit)) |
||||
#define pullup_disable_aux(port, bit) cbi(reg_port(port), (bit)) |
||||
#define set_pullup_aux(port, bit, on) write_bit(reg_port(port), (bit), (on)) |
||||
|
||||
|
||||
#define pullup_enable(io) pullup_enable_aux(io) |
||||
#define pullup_on(io) pullup_enable_aux(io) |
||||
|
||||
#define pullup_disable(io) pullup_disable_aux(io) |
||||
#define pullup_off(io) pullup_disable_aux(io) |
||||
|
||||
#define set_pullup(io, on) set_pullup_aux(io, on) |
@ -0,0 +1,77 @@ |
||||
#pragma once |
||||
|
||||
/**
|
||||
Utils for driving a WS2812 (WS2812B) RGB LED strips. |
||||
|
||||
It's implemented as macros to avoid overhead when passing values, and to |
||||
enable driving multiple strips at once. There is over 1us of free time between |
||||
the colors, which can be used for some processing or color computation. |
||||
|
||||
To avoid bloating your code, try to reduce the nuýmber of invocations - |
||||
compute color and then send it. |
||||
*/ |
||||
|
||||
#include <avr/io.h> |
||||
|
||||
#include "pins.h" |
||||
#include "nsdelay.h" |
||||
#include "colors.h" |
||||
|
||||
/* Driver code for WS2812B */ |
||||
|
||||
// --- timing constraints (NS) ---
|
||||
|
||||
#ifndef WS_T_1H |
||||
# define WS_T_1H 700 |
||||
#endif |
||||
|
||||
#ifndef WS_T_1L |
||||
# define WS_T_1L 150 |
||||
#endif |
||||
|
||||
#ifndef WS_T_0H |
||||
# define WS_T_0H 150 |
||||
#endif |
||||
|
||||
#ifndef WS_T_0L |
||||
# define WS_T_0L 700 |
||||
#endif |
||||
|
||||
#ifndef WS_T_LATCH |
||||
# define WS_T_LATCH 7000 |
||||
#endif |
||||
|
||||
|
||||
/** Wait long enough for the colors to show */ |
||||
#define ws_show() do { delay_ns_c(WS_T_LATCH, 0); } while(0) |
||||
|
||||
|
||||
/** Send one byte to the RGB strip */ |
||||
#define ws_send_byte(io, bb) do { \ |
||||
for (volatile int8_t __wsba_i = 7; __wsba_i >= 0; --__wsba_i) { \
|
||||
if ((bb) & (1 << __wsba_i)) { \
|
||||
pin_high(io_pack(io)); delay_ns_c(WS_T_1H, -2); \
|
||||
pin_low(io_pack(io)); delay_ns_c(WS_T_1L, -10); \
|
||||
} else { \
|
||||
pin_high(io_pack(io)); delay_ns_c(WS_T_0H, -2); \
|
||||
pin_low(io_pack(io)); delay_ns_c(WS_T_0L, -10); \
|
||||
} \
|
||||
} \
|
||||
} while(0) |
||||
|
||||
|
||||
/** Send R,G,B color to the strip */ |
||||
#define ws_send_rgb(io, r, g, b) do { \ |
||||
ws_send_byte(io_pack(io), g); \
|
||||
ws_send_byte(io_pack(io), r); \
|
||||
ws_send_byte(io_pack(io), b); \
|
||||
} while(0) |
||||
|
||||
/** Send a RGB struct */ |
||||
#define ws_send_xrgb(io, xrgb) ws_send_rgb(io_pack(io), (xrgb).r, (xrgb).g, (xrgb).b) |
||||
|
||||
/** Send color hex */ |
||||
#define ws_send_rgb24(io, rgb) ws_send_rgb(io_pack(io), rgb24_r(rgb), rgb24_g(rgb), rgb24_b(rgb)) |
||||
#define ws_send_rgb15(io, rgb) ws_send_rgb(io_pack(io), rgb15_r(rgb), rgb15_g(rgb), rgb15_b(rgb)) |
||||
#define ws_send_rgb12(io, rgb) ws_send_rgb(io_pack(io), rgb12_r(rgb), rgb12_g(rgb), rgb12_b(rgb)) |
||||
#define ws_send_rgb6(io, rgb) ws_send_rgb(io_pack(io), rgb6_r(rgb), rgb6_g(rgb), rgb6_b(rgb)) |
@ -0,0 +1,116 @@ |
||||
#include <avr/io.h> |
||||
#include <avr/interrupt.h> |
||||
#include <util/delay.h> |
||||
#include <stdbool.h> |
||||
#include <stdint.h> |
||||
|
||||
#include "lib/meta.h" |
||||
#include "lib/arduino_pins.h" |
||||
#include "lib/calc.h" |
||||
#include "lib/colors.h" |
||||
#include "lib/ws2812.h" |
||||
|
||||
#define WS1 D10 |
||||
|
||||
void render(); |
||||
void init_karts(); |
||||
void move_karts(); |
||||
|
||||
|
||||
void SECTION(".init8") init_io() |
||||
{ |
||||
// led strip data
|
||||
as_output(WS1); |
||||
|
||||
// setup timer 10 ms
|
||||
TCCR0A = _BV(WGM01); // CTC
|
||||
TCCR0B = _BV(CS02) | _BV(CS00); // prescaler 512
|
||||
OCR0A = 100; // interrupt every 10 ms 156
|
||||
sbi(TIMSK0, OCIE0A); |
||||
sei(); |
||||
} |
||||
|
||||
/** timer 0 interrupt vector */ |
||||
ISR(TIMER0_COMPA_vect) |
||||
{ |
||||
move_karts(); |
||||
render(); |
||||
} |
||||
|
||||
|
||||
/** Unsigned int range struct */ |
||||
typedef struct { |
||||
uint8_t a; |
||||
uint8_t b; |
||||
int8_t dir; |
||||
uint8_t steptime; |
||||
uint8_t stepcnt; |
||||
xrgb_t color; |
||||
} kart_t; |
||||
|
||||
#define BLACK xrgb(0,0,0) |
||||
|
||||
#define karts_len 6 |
||||
#define screen_len 72 |
||||
kart_t karts[karts_len]; |
||||
xrgb_t screen[screen_len]; |
||||
|
||||
|
||||
void init_karts() |
||||
{ |
||||
karts[0] = (kart_t) { .a=0, .b=17, .dir=1, .steptime=2, .stepcnt=0, .color=xrgb(50, 0, 0) }; |
||||
karts[1] = (kart_t) { .a=10, .b=19, .dir=1, .steptime=3, .stepcnt=0, .color=xrgb(0, 50, 0) }; |
||||
karts[2] = (kart_t) { .a=20, .b=29, .dir=1, .steptime=7, .stepcnt=0, .color=xrgb(0, 0, 50) }; |
||||
karts[3] = (kart_t) { .a=40, .b=52, .dir=-1, .steptime=2, .stepcnt=0, .color=xrgb(50, 0, 50) }; |
||||
karts[4] = (kart_t) { .a=50, .b=69, .dir=-1, .steptime=11, .stepcnt=0, .color=xrgb(0, 20, 20) }; |
||||
karts[5] = (kart_t) { .a=25, .b=37, .dir=-1, .steptime=1, .stepcnt=0, .color=xrgb(60, 30, 0) }; |
||||
karts[5] = (kart_t) { .a=17, .b=25, .dir=1, .steptime=5, .stepcnt=0, .color=xrgb(25, 25, 0) }; |
||||
} |
||||
|
||||
|
||||
void move_karts() |
||||
{ |
||||
for (uint8_t j = 0; j < karts_len; j++) { |
||||
if (++karts[j].stepcnt >= karts[j].steptime) { |
||||
// move yo ass
|
||||
|
||||
if (karts[j].dir > 0) { |
||||
inc_wrap(karts[j].a, 0, screen_len - 1); |
||||
inc_wrap(karts[j].b, 0, screen_len - 1); |
||||
} else { |
||||
dec_wrap(karts[j].a, 0, screen_len - 1); |
||||
dec_wrap(karts[j].b, 0, screen_len - 1); |
||||
} |
||||
|
||||
karts[j].stepcnt = 0; |
||||
} |
||||
} |
||||
} |
||||
|
||||
|
||||
void render() |
||||
{ |
||||
// build the screen
|
||||
|
||||
// for each pixel
|
||||
for (uint8_t i = 0; i < screen_len; i++) { |
||||
screen[i] = BLACK; |
||||
// for each kart
|
||||
for (uint8_t j = 0; j < karts_len; j++) { |
||||
if (in_range_wrap(i, karts[j].a, karts[j].b)) { |
||||
screen[i] = add_xrgb(screen[i], karts[j].color); |
||||
} |
||||
} |
||||
} |
||||
|
||||
for (uint8_t i = 0; i < screen_len; i++) { |
||||
ws_send_xrgb(WS1, screen[i]); |
||||
} |
||||
} |
||||
|
||||
|
||||
void main() |
||||
{ |
||||
init_karts(); |
||||
while(1) {} // Timer interrupts do the rest
|
||||
} |
Loading…
Reference in new issue