added new 8-line snake version with updated library copy

master
Ondřej Hruška 9 years ago
parent 2b38adb74d
commit 244f54c36c
  1. 167
      projects/lcdsnake_v2/Makefile
  2. 10
      projects/lcdsnake_v2/README.md
  3. 5
      projects/lcdsnake_v2/debo_config.h
  4. 13
      projects/lcdsnake_v2/lcd_config.h
  5. 46
      projects/lcdsnake_v2/lib/adc.c
  6. 19
      projects/lcdsnake_v2/lib/adc.h
  7. 42
      projects/lcdsnake_v2/lib/arduino_pins.h
  8. 91
      projects/lcdsnake_v2/lib/calc.h
  9. 45
      projects/lcdsnake_v2/lib/debounce.c
  10. 64
      projects/lcdsnake_v2/lib/debounce.h
  11. 358
      projects/lcdsnake_v2/lib/lcd.c
  12. 146
      projects/lcdsnake_v2/lib/lcd.h
  13. 6
      projects/lcdsnake_v2/lib/meta.h
  14. 21
      projects/lcdsnake_v2/lib/nsdelay.h
  15. 129
      projects/lcdsnake_v2/lib/pins.h
  16. 211
      projects/lcdsnake_v2/lib/stream.c
  17. 99
      projects/lcdsnake_v2/lib/stream.h
  18. 428
      projects/lcdsnake_v2/main.c

@ -0,0 +1,167 @@
MCU = atmega328p
F_CPU = 16000000
LFUSE = 0xFF
HFUSE = 0xDE
EFUSE = 0x05
MAIN = main.c
## If you've split your program into multiple files,
## include the additional .c source (in same directory) here
## (and include the .h files in your foo.c)
LOCAL_SOURCE =
## Here you can link to one more directory (and multiple .c files)
# EXTRA_SOURCE_DIR = ../AVR-Programming-Library/
EXTRA_SOURCE_DIR = lib/
EXTRA_SOURCE_FILES = debounce.c lcd.c adc.c
EXTRA_CFLAGS =
##########------------------------------------------------------##########
########## Programmer Defaults ##########
########## Set up once, then forget about it ##########
########## (Can override. See bottom of file.) ##########
##########------------------------------------------------------##########
#19200
PROGRAMMER_TYPE = arduino
PROGRAMMER_ARGS = -b 57600 -P /dev/ttyUSB0
##########------------------------------------------------------##########
########## Makefile Magic! ##########
########## Summary: ##########
########## We want a .hex file ##########
########## Compile source files into .elf ##########
########## Convert .elf file into .hex ##########
########## You shouldn't need to edit below. ##########
##########------------------------------------------------------##########
## Defined programs / locations
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
AVRSIZE = avr-size
AVRDUDE = avrdude
## Compilation options, type man avr-gcc if you're curious.
CFLAGS = -std=gnu99 -mmcu=$(MCU) -DF_CPU=$(F_CPU)UL -I. -I$(EXTRA_SOURCE_DIR)
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums
CFLAGS += -Wall -Wno-main -Wno-strict-prototypes -Wno-comment
CFLAGS += -g2 -Wextra -Wfatal-errors
CFLAGS += -ffunction-sections -fdata-sections -Wl,--gc-sections -Wl,--relax
CFLAGS += $(EXTRA_CFLAGS)
CFLAGS_BUILD = $(CFLAGS) -Os
# CFLAGS += -lm
## CFLAGS += -Wl,-u,vfprintf -lprintf_flt -lm ## for floating-point printf
## CFLAGS += -Wl,-u,vfprintf -lprintf_min ## for smaller printf
## Lump target and extra source files together
TARGET = $(strip $(basename $(MAIN)))
SRC1 = $(TARGET).c
SRC = $(SRC1)
EXTRA_SOURCE = $(addprefix $(EXTRA_SOURCE_DIR), $(EXTRA_SOURCE_FILES))
SRC += $(EXTRA_SOURCE)
SRC += $(LOCAL_SOURCE)
## List of all header files
HEADERS = $(SRC:.c=.h)
## For every .c file, compile an .o object file
OBJ = $(SRC:.c=.o)
## Generic Makefile targets. (Only .hex file is necessary)
all: $(TARGET).hex size
pre: $(TARGET).pre
%.hex: %.elf
$(OBJCOPY) -R .eeprom -O ihex $< $@
%.elf: $(SRC)
$(CC) $(CFLAGS_BUILD) $(SRC) --output $@
%.pre: $(SRC1)
$(CC) $(CFLAGS) -E $(SRC1) --output $@
%.eeprom: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@
debug:
@echo
@echo "Source files:" $(SRC)
@echo "MCU, F_CPU, BAUD:" $(MCU), $(F_CPU), $(BAUD)
@echo
# Optionally create listing file from .elf
# This creates approximate assembly-language equivalent of your code.
# Useful for debugging time-sensitive bits,
# or making sure the compiler does what you want.
disassemble: $(TARGET).lst
dis: disassemble
lst: disassemble
eeprom: $(TARGET).eeprom
%.lst: %.elf
$(OBJDUMP) -S $< > $@
# Optionally show how big the resulting program is
size: $(TARGET).elf
$(AVRSIZE) -C --mcu=$(MCU) $(TARGET).elf
clean:
rm -f $(TARGET).elf $(TARGET).hex $(TARGET).obj \
$(TARGET).o $(TARGET).d $(TARGET).eep $(TARGET).lst \
$(TARGET).lss $(TARGET).sym $(TARGET).map $(TARGET)~ \
$(TARGET).eeprom
squeaky_clean:
rm -f *.elf *.hex *.obj *.o *.d *.eep *.lst *.lss *.sym *.map *~
##########------------------------------------------------------##########
########## Programmer-specific details ##########
########## Flashing code to AVR using avrdude ##########
##########------------------------------------------------------##########
flash: $(TARGET).hex
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U flash:w:$<
flash_eeprom: $(TARGET).eeprom
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -U eeprom:w:$<
terminal:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nt
flash_arduino: PROGRAMMER_TYPE = arduino
flash_arduino: PROGRAMMER_ARGS =
flash_arduino: flash
flash_dragon_isp: PROGRAMMER_TYPE = dragon_isp
flash_dragon_isp: PROGRAMMER_ARGS =
flash_dragon_isp: flash
##########------------------------------------------------------##########
########## Fuse settings and suitable defaults ##########
##########------------------------------------------------------##########
## Generic
FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
fuses:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) \
$(PROGRAMMER_ARGS) $(FUSE_STRING)
show_fuses:
$(AVRDUDE) -c $(PROGRAMMER_TYPE) -p $(MCU) $(PROGRAMMER_ARGS) -nv
## Called with no extra definitions, sets to defaults
set_default_fuses: FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
set_default_fuses: fuses

@ -0,0 +1,10 @@
Snake for HD44780
=================
This is a Snake game (known from old Nokia phones) played on a character display with HD44780.
Program tested on Arduino Pro Mini (flashed with avrdude using the Makefile).
**Connections** are `#define`d in `main.c`, board size and snake speed can also be adjusted. No external parts except the display and buttons required.
Best works with a gamepad, but any buttons will work.

@ -0,0 +1,5 @@
#pragma once
// Config file for debouncer
#define DEBO_CHANNELS 6
#define DEBO_TICKS 1

@ -0,0 +1,13 @@
#pragma once
// Config file for LCD.
#include "lib/arduino_pins.h"
#define LCD_RS D2
#define LCD_RW D3
#define LCD_E D4
#define LCD_D4 D5
#define LCD_D5 D6
#define LCD_D6 D7
#define LCD_D7 D8

@ -0,0 +1,46 @@
#include <avr/io.h>
#include <stdbool.h>
#include "calc.h"
#include "adc.h"
/** Initialize the ADC */
void adc_init()
{
ADCSRA |= _BV(ADPS2) | _BV(ADPS1) | _BV(ADPS0); // 128 prescaler -> 125 kHz
ADMUX |= _BV(REFS0); // Voltage reference
sbi(ADCSRA, ADEN); // Enable ADC
}
/** Disable AD */
void adc_disable()
{
cbi(ADCSRA, ADEN);
}
/** Sample analog pin with 8-bit precision */
uint8_t adc_read_byte(uint8_t channel)
{
write_low_nibble(ADMUX, channel); // Select channel to sample
sbi(ADMUX, ADLAR); // Align result to left
sbi(ADCSRA, ADSC); // Start conversion
while(bit_is_high(ADCSRA, ADSC)); // Wait for it...
return ADCH; // The upper 8 bits of ADC result
}
/** Sample analog pin with 10-bit precision */
uint16_t adc_read_word(uint8_t channel)
{
write_low_nibble(ADMUX, channel); // Select channel to sample
cbi(ADMUX, ADLAR); // Align result to right
sbi(ADCSRA, ADSC); // Start conversion
while(get_bit(ADCSRA, ADSC)); // Wait for it...
return ADCW; // The whole ADC word (10 bits)
}

@ -0,0 +1,19 @@
#pragma once
//
// Utilities for build-in A/D converter
//
#include <avr/io.h>
/** Initialize the ADC */
void adc_init();
/** Disable AD (for power saving?) */
void adc_disable();
/** Sample analog pin with 8-bit precision */
uint8_t adc_read_byte(uint8_t channel);
/** Sample analog pin with 10-bit precision */
uint16_t adc_read_word(uint8_t channel);

@ -0,0 +1,42 @@
#pragma once
//
// Pin definitions for Arduino (Pro Mini with ATmega328P)
//
#include "pins.h"
#define D0 D,0
#define D1 D,1
#define D2 D,2
#define D3 D,3
#define D4 D,4
#define D5 D,5
#define D6 D,6
#define D7 D,7
#define D8 B,0
#define D9 B,1
#define D10 B,2
// MOSI MISO SCK - not good for input
#define D11 B,3
#define D12 B,4
#define D13 B,5
#define D14 C,0
#define D15 C,1
#define D16 C,2
#define D17 C,3
#define D18 C,4
#define D19 C,5
#define D20 C,6
#define D21 C,7
#define A0 C,0
#define A1 C,1
#define A2 C,2
#define A3 C,3
#define A4 C,4
#define A5 C,5
#define A6 C,6
#define A7 C,7

@ -0,0 +1,91 @@
#pragma once
//
// Bit and byte manipulation utilities
//
// --- Increment in range ---
// when overflown, wraps within range. Lower bound < upper bound.
// ..., upper bound excluded
#define inc_wrap(var, min, max) do { if ((var) >= (max - 1)) { (var) = (min); } else { (var)++; } } while(0)
// ..., upper bound included
#define inc_wrapi(var, min, max) inc_wrap((var), (min), (max) + 1)
// --- Decrement in range ---
// when underflown, wraps within range. Lower bound < upper bound.
// ..., upper bound excluded
#define dec_wrap(var, min, max) do { if ((var) <= (min)) { (var) = (max) - 1; } else { (var)--; } } while(0)
// ..., upper bound included
#define dec_wrapi(var, min, max) dec_wrap((var), (min), (max) + 1)
// --- Bit manipulation --
// Set bit
#define sbi(reg, bit) do { (reg) |= (1 << (uint8_t)(bit)); } while(0)
// Clear bit
#define cbi(reg, bit) do { (reg) &= ~(1 << (uint8_t)(bit)); } while(0)
// Get n-th bit
#define read_bit(reg, bit) (((reg) >> (uint8_t)(bit)) & 0x1)
#define get_bit(reg, bit) read_bit(reg, bit)
// Test n-th bit (Can't use bit_is_set, as it's redefined in sfr_def.h)
#define bit_is_high(reg, bit) read_bit(reg, bit)
#define bit_is_low(reg, bit) (!read_bit(reg, bit))
// Write value to n-th bit
#define write_bit(reg, bit, value) do { (reg) = ((reg) & ~(1 << (uint8_t)(bit))) | (((uint8_t)(value) & 0x1) << (uint8_t)(bit)); } while(0)
#define set_bit(reg, bit, value) write_bit(reg, bit, value)
// Invert n-th bit
#define toggle_bit(reg, bit) do { (reg) ^= (1 << (uint8_t)(bit)); } while(0)
// --- Bit manipulation with pointer to variable ---
// Set n-th bit in pointee
#define sbi_p(reg_p, bit) do { (*(reg_p)) |= (1 << (uint8_t)(bit)); } while(0)
// Clear n-th bit in pointee
#define cbi_p(reg_p, bit) do { (*(reg_p)) &= ~(1 << (uint8_t)(bit)); } while(0)
// Get n-th bit in pointee
#define read_bit_p(reg_p, bit) ((*(reg_p) >> (uint8_t)(bit)) & 0x1)
#define get_bit_p(reg_p, bit) read_bit_p(reg_p, bit)
// Test n-th bit in pointee (Can't use bit_is_set, as it's redefined in sfr_def.h)
#define bit_is_high_p(reg_p, bit) read_bit_p(reg_p, bit)
#define bit_is_low_p(reg_p, bit) (!read_bit_p(reg_p, bit))
// Write value to a bit in pointee
#define write_bit_p(reg_p, bit, value) do { *(reg_p) = (*(reg_p) & ~(1 << ((uint8_t)(bit) & 0x1))) | (((uint8_t)(value) & 0x1) << (uint8_t)(bit)); } while(0)
#define set_bit_p(reg_p, bit, value) write_bit_p(reg_p, bit, value)
#define toggle_bit_p(reg_p, bit) do { *(reg_p) ^= (1 << (uint8_t)(bit)); } while(0)
// --- Nibble manipulation ---
// Replace nibble in a byte
#define write_low_nibble(reg, value) do { (reg) = ((reg) & 0xF0) | ((uint8_t)(value) & 0xF); } while(0)
#define write_high_nibble(reg, value) do { (reg) = ((reg) & 0x0F) | (((uint8_t)(value) & 0xF) << 4); } while(0)
#define write_low_nibble_p(reg_p, value) do { *(reg_p) = (*(reg_p) & 0xF0) | ((uint8_t)(value) & 0xF); } while(0)
#define write_high_nibble_p(reg_p, value) do { *(reg_p) = (*(reg_p) & 0x0F) | (((uint8_t)(value) & 0xF) << 4); } while(0)
#define low_nibble(x) ((uint8_t)(x) & 0xF)
#define high_nibble(x) (((uint8_t)(x) & 0xF0) >> 4)
// --- Range tests ---
// Test if X is within low..high, regardless of bounds order
#define in_range(x, low, high) ((((low) < (high)) && ((x) >= (low) && (x) < (high))) || (((low) > (high)) && ((x) >= (high) && (x) < (low))))
// ..., include greater bound
#define in_rangei(x, low, high) ((((low) <= (high)) && ((x) >= (low) && (x) <= (high))) || (((low) > (high)) && ((x) >= (high) && (x) <= (low))))
// Test if X in low..high, wrap around ends if needed.
#define in_range_wrap(x, low, high) ((((low) < (high)) && ((x) >= (low) && (x) < (high))) || (((low) > (high)) && ((x) >= (low) || (x) < (high))))
// ..., include upper bound
#define in_range_wrapi(x, low, high) ((((low) <= (high)) && ((x) >= (low) && (x) <= (high))) || (((low) > (high)) && ((x) >= (low) || (x) <= (high))))

@ -0,0 +1,45 @@
#include <avr/io.h>
#include <stdbool.h>
#include "debounce.h"
#include "calc.h"
#include "pins.h"
#include "debo_config.h"
/** Debounce data array */
uint8_t debo_next_slot = 0;
uint8_t debo_register(PORT_P reg, uint8_t bit, bool invert)
{
debo_slots[debo_next_slot] = (debo_slot_t){
.reg = reg,
.bit = bit | ((invert & 1) << 7) | (get_bit_p(reg, bit) << 6), // bit 7 = invert, bit 6 = state
.count = 0,
};
return debo_next_slot++;
}
/** Check debounced pins, should be called periodically. */
void debo_tick()
{
for (uint8_t i = 0; i < debo_next_slot; i++) {
// current pin value (right 3 bits, xored with inverse bit)
bool value = get_bit_p(debo_slots[i].reg, debo_slots[i].bit & 0x7);
if (value != get_bit(debo_slots[i].bit, 6)) {
// different pin state than last recorded state
if (debo_slots[i].count < DEBO_TICKS) {
debo_slots[i].count++;
} else {
// overflown -> latch value
set_bit(debo_slots[i].bit, 6, value); // set state bit
debo_slots[i].count = 0;
}
} else {
debo_slots[i].count = 0; // reset the counter
}
}
}

@ -0,0 +1,64 @@
#pragma once
//
// An implementation of button debouncer.
//
// ----
//
// You must provide a config file debo_config.h (next to your main.c)
//
// Example:
// #pragma once
// #define DEBO_CHANNELS 2
// #define DDEBO_TICKS 5
//
// ----
//
// A pin is registered like this:
//
// #define BTN1 B,0
// #define BTN2 B,1
//
// debo_add(BTN0); // The function returns number assigned to the pin (0, 1, ...)
// debo_add_rev(BTN1); // active low
// debo_register(&PINB, PB2, 0); // direct access - register, pin & invert
//
// Then periodically call the tick function (perhaps in a timer interrupt):
//
// debo_tick();
//
// To check if input is active, use
//
// debo_get_pin(0); // state of input #0 (registered first)
// debo_get_pin(1); // state of input #1 (registered second)
//
#include <avr/io.h>
#include <stdbool.h>
#include "calc.h"
#include "pins.h"
#include "debo_config.h"
/* Internal deboucer entry */
typedef struct {
PORT_P reg; // pointer to IO register
uint8_t bit; // bits 6 and 7 of this hold "state" & "invert" flag
uint8_t count; // number of ticks this was in the new state
} debo_slot_t;
debo_slot_t debo_slots[DEBO_CHANNELS];
/** Add a pin for debouncing */
#define debo_add_rev(io) debo_register(&io2pin(io_pack(io)), io2n(io_pack(io)), 1)
#define debo_add(io) debo_register(&io2pin(io_pack(io)), io2n(io_pack(io)), 0)
/** Add a pin for debouncing (low level function) */
uint8_t debo_register(PORT_P pin_reg_pointer, uint8_t bit, bool invert);
/** Check debounced pins, should be called periodically. */
void debo_tick();
/** Get a value of debounced pin */
#define debo_get_pin(i) (get_bit(debo_slots[i].bit, 6) ^ get_bit(debo_slots[i].bit, 7))

@ -0,0 +1,358 @@
#include <stdbool.h>
#include <stdint.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include "calc.h"
#include "pins.h"
#include "nsdelay.h"
#include "lcd.h"
#include "lcd_config.h"
// Start address of rows
const uint8_t LCD_ROW_ADDR[] = {0x00, 0x40, 0x14, 0x54};
// Shared stream instance
static STREAM _lcd_singleton;
STREAM* lcd;
// Internal prototypes
void _lcd_mode_r();
void _lcd_mode_w();
void _lcd_clk();
void _lcd_wait_bf();
void _lcd_write_byte(uint8_t bb);
uint8_t _lcd_read_byte();
// Write utilities
#define _lcd_write_low(bb) _lcd_write_nibble((bb) & 0x0F)
#define _lcd_write_high(bb) _lcd_write_nibble(((bb) & 0xF0) >> 4)
#define _lcd_write_nibble(nib) do { \
write_pin(LCD_D7, get_bit((nib), 3)); \
write_pin(LCD_D6, get_bit((nib), 2)); \
write_pin(LCD_D5, get_bit((nib), 1)); \
write_pin(LCD_D4, get_bit((nib), 0)); \
} while(0)
// 0 W, 1 R
bool _lcd_mode;
struct {
uint8_t x;
uint8_t y;
} _pos;
enum {
TEXT = 0,
CG = 1
} _addrtype;
/** Initialize the display */
void lcd_init()
{
// configure pins as output
as_output(LCD_E);
as_output(LCD_RW);
as_output(LCD_RS);
_lcd_mode = 1; // force data pins to output
_lcd_mode_w();
// Magic sequence to invoke Cthulhu (or enter 4-bit mode)
_delay_ms(16);
_lcd_write_nibble(0b0011);
_lcd_clk();
_delay_ms(5);
_lcd_clk();
_delay_ms(5);
_lcd_clk();
_delay_ms(5);
_lcd_write_nibble(0b0010);
_lcd_clk();
_delay_us(100);
// Configure the display
lcd_command(LCD_IFACE_4BIT_2LINE);
lcd_command(LCD_DISABLE);
lcd_command(LCD_CLEAR);
lcd_command(LCD_MODE_INC);
// mark as enabled
lcd_enable();
_lcd_singleton.tx = &lcd_write;
_lcd_singleton.rx = &lcd_read;
// Stream
lcd = &_lcd_singleton;
_pos.x = 0;
_pos.y = 0;
_addrtype = TEXT;
}
/** Send a pulse on the ENABLE line */
void _lcd_clk()
{
pin_up(LCD_E);
delay_ns(450);
pin_down(LCD_E);
}
/** Enter READ mode */
void _lcd_mode_r()
{
if (_lcd_mode == 1) return; // already in R mode
pin_up(LCD_RW);
as_input_pu(LCD_D7);
as_input_pu(LCD_D6);
as_input_pu(LCD_D5);
as_input_pu(LCD_D4);
_lcd_mode = 1;
}
/** Enter WRITE mode */
void _lcd_mode_w()
{
if (_lcd_mode == 0) return; // already in W mode
pin_down(LCD_RW);
as_output(LCD_D7);
as_output(LCD_D6);
as_output(LCD_D5);
as_output(LCD_D4);
_lcd_mode = 0;
}
/** Read a byte */
uint8_t _lcd_read_byte()
{
_lcd_mode_r();
uint8_t res = 0;
_lcd_clk();
res = (read_pin(LCD_D7) << 7) | (read_pin(LCD_D6) << 6) | (read_pin(LCD_D5) << 5) | (read_pin(LCD_D4) << 4);
_lcd_clk();
res |= (read_pin(LCD_D7) << 3) | (read_pin(LCD_D6) << 2) | (read_pin(LCD_D5) << 1) | (read_pin(LCD_D4) << 0);
return res;
}
/** Write an instruction byte */
void lcd_command(uint8_t bb)
{
_lcd_wait_bf();
pin_down(LCD_RS); // select instruction register
_lcd_write_byte(bb); // send instruction byte
}
/** Write a data byte */
void lcd_write(uint8_t bb)
{
if (_addrtype == TEXT) {
if (bb == '\r') {
// CR
_pos.x = 0;
lcd_xy(_pos.x, _pos.y);
return;
}
if (bb == '\n') {
// LF
_pos.y++;
lcd_xy(_pos.x, _pos.y);
return;
}
_pos.x++;
}
_lcd_wait_bf();
pin_up(LCD_RS); // select data register
_lcd_write_byte(bb); // send data byte
}
/** Read BF & Address */
uint8_t lcd_read_bf_addr()
{
pin_down(LCD_RS);
return _lcd_read_byte();
}
/** Read CGRAM or DDRAM */
uint8_t lcd_read()
{
if (_addrtype == TEXT) _pos.x++;
pin_up(LCD_RS);
return _lcd_read_byte();
}
/** Write a byte using the 4-bit interface */
void _lcd_write_byte(uint8_t bb)
{
_lcd_mode_w(); // enter W mode
_lcd_write_high(bb);
_lcd_clk();
_lcd_write_low(bb);
_lcd_clk();
}
/** Wait until the device is ready */
void _lcd_wait_bf()
{
uint8_t d = 0;
while(d++ < 120 && lcd_read_bf_addr() & _BV(7))
_delay_us(1);
}
/** Send a string to LCD */
void lcd_puts(char* str_p)
{
char c;
while ((c = *str_p++))
lcd_putc(c);
}
/** Print from progmem */
void lcd_puts_P(const char* str_p)
{
char c;
while ((c = pgm_read_byte(str_p++)))
lcd_putc(c);
}
/** Sedn a char to LCD */
void lcd_putc(const char c)
{
lcd_write(c);
}
/** Set cursor position */
void lcd_xy(const uint8_t x, const uint8_t y)
{
_pos.x = x;
_pos.y = y;
lcd_addr(LCD_ROW_ADDR[y] + (x));
}
uint8_t _lcd_old_cursor = CURSOR_NONE;
bool _lcd_enabled = false;
/** Set LCD cursor. If not enabled, only remember it. */
void lcd_cursor(uint8_t type)
{
_lcd_old_cursor = (type & CURSOR_BOTH);
if (_lcd_enabled) lcd_command(LCD_CURSOR_NONE | _lcd_old_cursor);
}
/** Display display (preserving cursor) */
void lcd_disable()
{
lcd_command(LCD_DISABLE);
_lcd_enabled = false;
}
/** Enable display (restoring cursor) */
void lcd_enable()
{
_lcd_enabled = true;
lcd_cursor(_lcd_old_cursor);
}
/** Go home */
void lcd_home()
{
lcd_command(LCD_HOME);
_pos.x = 0;
_pos.y = 0;
_addrtype = TEXT;
}
/** Clear the screen */
void lcd_clear()
{
lcd_command(LCD_CLEAR);
_pos.x = 0;
_pos.y = 0;
_addrtype = TEXT;
}
/** Define a glyph */
void lcd_glyph(const uint8_t index, const uint8_t* array)
{
lcd_addr_cg(index * 8);
for (uint8_t i = 0; i < 8; ++i) {
lcd_write(array[i]);
}
// restore previous position
lcd_xy(_pos.x, _pos.y);
_addrtype = TEXT;
}
/** Define a glyph */
void lcd_glyph_P(const uint8_t index, const uint8_t* array)
{
lcd_addr_cg(index * 8);
for (uint8_t i = 0; i < 8; ++i) {
lcd_write(pgm_read_byte(&array[i]));
}
// restore previous position
lcd_xy(_pos.x, _pos.y);
_addrtype = TEXT;
}
/** Set address in CGRAM */
void lcd_addr_cg(const uint8_t acg)
{
_addrtype = CG;
lcd_command(0b01000000 | ((acg) & 0b00111111));
}
/** Set address in DDRAM */
void lcd_addr(const uint8_t add)
{
_addrtype = TEXT;
lcd_command(0b10000000 | ((add) & 0b01111111));
}

@ -0,0 +1,146 @@
#pragma once
// HD44780 LCD display driver - 4-bit mode
//
// LCD pins are configured using a file lcd_config.h, which you
// have to add next to your main.c file.
//
// Content can be something like this:
//
// #pragma once
// #include "lib/arduino_pins.h"
// #define LCD_RS D10
// #define LCD_RW D11
// #define LCD_E D12
// #define LCD_D4 D13
// #define LCD_D5 D14
// #define LCD_D6 D15
// #define LCD_D7 D16
//
#include <stdint.h>
#include <stdbool.h>
#include "stream.h"
// File with configs
#include "lcd_config.h"
// Shared LCD stream object
// Can be used with functions from stream.h once LCD is initialized
extern STREAM* lcd;
// --- Commands ---
// Clear screen (reset)
#define LCD_CLEAR 0b00000001
// Move cursor to (0,0), unshift...
#define LCD_HOME 0b00000010
// Set mode: Increment + NoShift
#define LCD_MODE_INC 0b00000110
// Set mode: Increment + Shift
#define LCD_MODE_INC_SHIFT 0b00000111
// Set mode: Decrement + NoShift
#define LCD_MODE_DEC 0b00000100
// Set mode: Decrement + Shift
#define LCD_MODE_DEC_SHIFT 0b00000101
// Disable display (data remains untouched)
#define LCD_DISABLE 0b00001000
// Disable cursor
#define LCD_CURSOR_NONE 0b00001100
// Set cursor to still underscore
#define LCD_CURSOR_BAR 0b00001110
// Set cursor to blinking block
#define LCD_CURSOR_BLINK 0b00001101
// Set cursor to both of the above at once
#define LCD_CURSOR_BOTH (LCD_CURSOR_BAR | LCD_CURSOR_BLINK)
// Move cursor
#define LCD_MOVE_LEFT 0b00010000
#define LCD_MOVE_RIGHT 0b00010100
// Shift display
#define LCD_SHIFT_LEFT 0b00011000
#define LCD_SHIFT_RIGHT 0b00011100
// Set iface to 5x7 font, 1-line
#define LCD_IFACE_4BIT_1LINE 0b00100000
#define LCD_IFACE_8BIT_1LINE 0b00110000
// Set iface to 5x7 font, 2-line
#define LCD_IFACE_4BIT_2LINE 0b00101000
#define LCD_IFACE_8BIT_2LINE 0b00111000
/** Initialize the display */
void lcd_init();
/** Write an instruction byte */
void lcd_command(uint8_t bb);
/** Write a data byte */
void lcd_write(uint8_t bb);
/** Read BF & Address */
uint8_t lcd_read_bf_addr();
/** Read CGRAM or DDRAM */
uint8_t lcd_read();
/** Send a string to LCD */
void lcd_puts(char* str_p);
/** Send a string to LCD from program memory */
void lcd_puts_P(const char* str_p);
/** Sedn a char to LCD */
void lcd_putc(const char c);
/** Show string at X, Y */
#define lcd_puts_xy(x, y, str_p) do { lcd_xy((x), (y)); lcd_puts((str_p)); } while(0)
/** Show string at X, Y */
#define lcd_puts_xy_P(x, y, str_p) do { lcd_xy((x), (y)); lcd_puts_P((str_p)); } while(0)
/** Show char at X, Y */
#define lcd_putc_xy(x, y, c) do { lcd_xy((x), (y)); lcd_putc((c)); } while(0)
/** Set cursor position */
void lcd_xy(const uint8_t x, const uint8_t y);
/** Set LCD cursor. If not enabled, only remember it. */
#define CURSOR_NONE 0b00
#define CURSOR_BAR 0b10
#define CURSOR_BLINK 0b01
#define CURSOR_BOTH 0b11
void lcd_cursor(uint8_t type);
/** Display display (preserving cursor) */
void lcd_disable();
/** Enable display (restoring cursor) */
void lcd_enable();
/** Go home */
void lcd_home();
/** Clear the screen */
void lcd_clear();
/** Define a glyph - 8 bytes, right 5 bits are used */
void lcd_glyph(const uint8_t index, const uint8_t* array);
/** Define a glyph that's in PROGMEM */
void lcd_glyph_P(const uint8_t index, const uint8_t* array);
/** Set address in CGRAM */
void lcd_addr_cg(const uint8_t acg);
/** Set address in DDRAM */
void lcd_addr(const uint8_t add);

@ -0,0 +1,6 @@
#pragma once
// Weird constructs for the compiler
// general macros
#define SECTION(pos) __attribute__((naked, used, section(pos)))

@ -0,0 +1,21 @@
#pragma once
//
// Functions for precise delays (nanoseconds / cycles)
//
#include <avr/io.h>
#include <util/delay_basic.h>
#include <stdint.h>
/* Convert nanoseconds to cycle count */
#define ns2cycles(ns) ( (ns) / (1000000000L / (signed long) F_CPU) )
/** Wait c cycles */
#define delay_c(c) (((c) > 0) ? __builtin_avr_delay_cycles(c) : __builtin_avr_delay_cycles(0))
/** Wait n nanoseconds, plus c cycles */
#define delay_ns_c(ns, c) delay_c(ns2cycles(ns) + (c))
/** Wait n nanoseconds */
#define delay_ns(ns) delay_c(ns2cycles(ns))

@ -0,0 +1,129 @@
#pragma once
//
// This file provides macros for pin manipulation.
//
// You can define your application pins like so:
//
// // Led at PORTB, pin 1
// #define LED B,1
//
// // Switch at PORTD, pin 7
// #define SW1 D,7
//
// Now you can use macros from this file to wirh with the pins, eg:
//
// as_output(LED);
// as_input(SW1);
// pullup_on(SW1);
//
// toggle_pin(LED);
// while (pin_is_low(SW1));
//
// - The macros io2XXX() can be used to get literal name of register associated with the pin.
// - io2n() provides pin number.
// - The underscored and _aux macros are internal and should not be used elsewhere.
// - The io_pack() macro is used to pass pin (io) to other macro without expanding it.
//
#include <avr/io.h>
#include "calc.h"
// Helpers
// Get particular register associated with the name X (eg. D -> PORTD)
#define _reg_ddr(X) DDR ## X
#define _reg_port(X) PORT ## X
#define _reg_pin(X) PIN ## X
#define _io2ddr_aux(reg, bit) _reg_ddr(reg)
#define _io2port_aux(reg, bit) _reg_port(reg)
#define _io2pin_aux(reg, bit) _reg_pin(reg)
#define _io2n_aux(reg, bit) bit
// === Convert A,1 to corresponding register and pin number ===
#define io2ddr(io) _io2ddr_aux(io)
#define io2port(io) _io2port_aux(io)
#define io2pin(io) _io2pin_aux(io)
#define io2n(io) _io2n_aux(io)
// === covert "A", "1" to "A,1" for passing on to another macro ===
#define io_pack(port, bit) port, bit
// === Useful types for ports and pins ===
// pointer to port
typedef volatile uint8_t* PORT_P;
// number of bit in port
typedef uint8_t BIT_N;
// === pin manipulation ===
// Helpers
#define _set_pin_aux(port, bit) sbi(_reg_port(port), (bit))
#define _clear_pin_aux(port, bit) cbi(_reg_port(port), (bit))
#define _read_pin_aux(port, bit) get_bit(_reg_pin(port), (bit))
#define _write_pin_aux(port, bit, value) set_bit(_reg_port(port), (bit), (value))
#define _toggle_pin_aux(port, bit) sbi(_reg_pin(port), (bit))
// Set pin to HIGH
#define pin_up(io) _set_pin_aux(io)
#define pin_high(io) _set_pin_aux(io)
// Set pin to LOW
#define pin_down(io) _clear_pin_aux(io)
#define pin_low(io) _clear_pin_aux(io)
// Get input pin value
#define get_pin(io) _read_pin_aux(io)
#define read_pin(io) _read_pin_aux(io)
// Check if pin is low or high
#define pin_is_low(io) !_read_pin_aux(io)
#define pin_is_high(io) _read_pin_aux(io)
// Write a value to pin
#define set_pin(io, value) _write_pin_aux(io, (value))
#define write_pin(io, value) _write_pin_aux(io, (value))
#define toggle_pin(io) _toggle_pin_aux(io)
// === Setting pin direction ===
// Helpers
#define _as_input_aux(port, bit) cbi(_reg_ddr(port), (bit))
#define _as_output_aux(port, bit) sbi(_reg_ddr(port), (bit))
#define _set_dir_aux(port, bit, dir) write_bit(_reg_ddr(port), (bit), (dir))
// Pin as input (_pu ... with pull-up)
#define as_input(io) _as_input_aux(io)
#define as_input_pu(io) do { _as_input_aux(io); _pullup_enable_aux(io); } while(0)
// Pin as output
#define as_output(io) _as_output_aux(io)
// Set direction (1 ... output)
#define set_dir(io, dir) _set_dir_aux(io, (dir))
// === Setting pullup ===
// Helpers
#define _pullup_enable_aux(port, bit) sbi(_reg_port(port), (bit))
#define _pullup_disable_aux(port, bit) cbi(_reg_port(port), (bit))
#define _set_pullup_aux(port, bit, on) write_bit(_reg_port(port), (bit), (on))
// Enable pullup
#define pullup_enable(io) _pullup_enable_aux(io)
#define pullup_on(io) _pullup_enable_aux(io)
// Disable pullup
#define pullup_disable(io) _pullup_disable_aux(io)
#define pullup_off(io) _pullup_disable_aux(io)
// Set pullup to value (1 ... pullup enabled)
#define set_pullup(io, on) _set_pullup_aux(io, on)

@ -0,0 +1,211 @@
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include "stream.h"
#include "calc.h"
static char tmpstr[20]; // buffer for number rendering
void put_str(const STREAM *p, char* str)
{
char c;
while ((c = *str++))
p->tx(c);
}
void put_str_P(const STREAM *p, const char* str)
{
char c;
while ((c = pgm_read_byte(str++)))
p->tx(c);
}
static void _putnf(const STREAM *p, const uint8_t places);
/** Send signed int8 */
void put_u8(const STREAM *p, const uint8_t num)
{
utoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Send unsigned int8 */
void put_i8(const STREAM *p, const int8_t num)
{
itoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Send unsigned int */
void put_u16(const STREAM *p, const uint16_t num)
{
utoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Send signed int */
void put_i16(const STREAM *p, const int16_t num)
{
itoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Send unsigned long */
void put_u32(const STREAM *p, const uint32_t num)
{
ultoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Send signed long */
void put_i32(const STREAM *p, const int32_t num)
{
ltoa(num, tmpstr, 10);
put_str(p, tmpstr);
}
/** Print number as hex */
void _print_hex(const STREAM *p, uint8_t* start, uint8_t bytes)
{
for (; bytes > 0; bytes--) {
uint8_t b = *(start + bytes - 1);
for(uint8_t j = 0; j < 2; j++) {
uint8_t x = high_nibble(b);
b = b << 4;
if (x < 0xA) {
p->tx('0' + x);
} else {
p->tx('A' + (x - 0xA));
}
}
}
}
/** Send unsigned int8 */
void put_x8(const STREAM *p, const uint8_t num)
{
_print_hex(p, (uint8_t*) &num, 1);
}
/** Send int as hex */
void put_x16(const STREAM *p, const uint16_t num)
{
_print_hex(p, (uint8_t*) &num, 2);
}
/** Send long as hex */
void put_x32(const STREAM *p, const uint32_t num)
{
_print_hex(p, (uint8_t*) &num, 4);
}
/** Send long long as hex */
void put_x64(const STREAM *p, const uint64_t num)
{
_print_hex(p, (uint8_t*) &num, 8);
}
// float variant doesn't make sense for 8-bit int
/** Send unsigned int as float */
void put_u16f(const STREAM *p, const uint16_t num, const uint8_t places)
{
utoa(num, tmpstr, 10);
_putnf(p, places);
}
/** Send signed int as float */
void put_i16f(const STREAM *p, const int16_t num, const uint8_t places)
{
if (num < 0) {
p->tx('-');
itoa(-num, tmpstr, 10);
} else {
itoa(num, tmpstr, 10);
}
_putnf(p, places);
}
/** Send unsigned long as float */
void put_u32f(const STREAM *p, const uint32_t num, const uint8_t places)
{
ultoa(num, tmpstr, 10);
_putnf(p, places);
}
/** Send signed long as float */
void put_i32f(const STREAM *p, const int32_t num, const uint8_t places)
{
if (num < 0) {
p->tx('-');
ltoa(-num, tmpstr, 10);
} else {
ltoa(num, tmpstr, 10);
}
_putnf(p, places);
}
/** Print number in tmp string as float with given decimal point position */
void _putnf(const STREAM *p, const uint8_t places)
{
// measure text length
uint8_t len = 0;
while(tmpstr[len] != 0) len++;
int8_t at = len - places;
// print virtual zeros
if (at <= 0) {
p->tx('0');
p->tx('.');
while(at <= -1) {
p->tx('0');
at++;
}
at = -1;
}
// print the number
uint8_t i = 0;
while(i < len) {
if (at-- == 0) {
p->tx('.');
}
p->tx(tmpstr[i++]);
}
}
/** Print CR LF */
void put_nl(const STREAM *p)
{
p->tx(13);
p->tx(10);
}

@ -0,0 +1,99 @@
#pragma once
//
// Streams -- in this library -- are instances of type STREAM.
//
// A stream can be used for receiving and sending bytes, generally
// it's a pipe to a device.
//
// They are designed for printing numbers and strings, but can
// also be used for general data transfer.
//
// Examples of streams:
// "uart.h" -> declares global variable "uart" which is a pointer to the UART stream
// "lcd.h" -> declares a global variable "lcd" (pointer to LCD scho stream)
//
// Streams help avoid code duplication, since the same functions can be used
// to format and print data to different device types.
//
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include <avr/pgmspace.h>
/** Stream structure */
typedef struct {
void (*tx) (uint8_t b);
uint8_t (*rx) (void);
} STREAM;
/** Print string into a stream */
void put_str(const STREAM *p, char* str);
/** Print a programspace string into a stream */
void put_str_P(const STREAM *p, const char* str);
/** Send signed int8 */
void put_u8(const STREAM *p, const uint8_t num);
/** Send unsigned int8 */
void put_i8(const STREAM *p, const int8_t num);
/** Send unsigned int */
void put_u16(const STREAM *p, const uint16_t num);
/** Send signed int */
void put_i16(const STREAM *p, const int16_t num);
/** Send unsigned long */
void put_u32(const STREAM *p, const uint32_t num);
/** Send signed long */
void put_i32(const STREAM *p, const int32_t num);
/** Send unsigned int8 */
void put_x8(const STREAM *p, const uint8_t num);
/** Send int as hex */
void put_x16(const STREAM *p, const uint16_t num);
/** Send long as hex */
void put_x32(const STREAM *p, const uint32_t num);
/** Send long long as hex */
void put_x64(const STREAM *p, const uint64_t num);
// float variant doesn't make sense for 8-bit int
/** Send unsigned int as float */
void put_u16f(const STREAM *p, const uint16_t num, const uint8_t places);
/** Send signed int as float */
void put_i16f(const STREAM *p, const int16_t num, const uint8_t places);
/** Send unsigned long as float */
void put_u32f(const STREAM *p, const uint32_t num, const uint8_t places);
/** Send signed long as float */
void put_i32f(const STREAM *p, const int32_t num, const uint8_t places);
/** Print CR LF */
void put_nl(const STREAM *p);

@ -0,0 +1,428 @@
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "lib/arduino_pins.h"
#include "lib/calc.h"
#include "lib/adc.h"
#include "lib/lcd.h"
#include "lib/debounce.h"
// Buttons (to ground)
#define BTN_LEFT A0
#define BTN_RIGHT A1
#define BTN_UP A2
#define BTN_DOWN A3
#define BTN_PAUSE A4
#define BTN_RESTART A5
// Debouncer channels for buttons
// (Must be added in this order to debouncer)
#define D_LEFT 0
#define D_RIGHT 1
#define D_UP 2
#define D_DOWN 3
#define D_PAUSE 4
#define D_RESTART 5
// Board size (!!! rows = 2x number of display lines, max 2*4 = 8 !!!)
#define ROWS 8
#define COLS 20
// Delay between snake steps, in 10 ms
#define STEP_DELAY 24
// proto
void update();
void init_cgram();
void init_gameboard();
void init()
{
// Randomize RNG
adc_init();
srand(adc_read_word(3));
// Init LCD
lcd_init();
init_cgram(); // load default glyphs
// Init game board.
init_gameboard();
// gamepad buttons
as_input_pu(BTN_LEFT);
as_input_pu(BTN_RIGHT);
as_input_pu(BTN_UP);
as_input_pu(BTN_DOWN);
as_input_pu(BTN_PAUSE);
as_input_pu(BTN_RESTART);
// add buttons to debouncer
debo_add_rev(BTN_LEFT);
debo_add_rev(BTN_RIGHT);
debo_add_rev(BTN_UP);
debo_add_rev(BTN_DOWN);
debo_add_rev(BTN_PAUSE);
debo_add_rev(BTN_RESTART);
// setup timer
TCCR0A = _BV(WGM01); // CTC
TCCR0B = _BV(CS02) | _BV(CS00); // prescaler 1024
OCR0A = 156; // interrupt every 10 ms
sbi(TIMSK0, OCIE0A);
sei();
}
/** timer 0 interrupt vector */
ISR(TIMER0_COMPA_vect)
{
debo_tick(); // poll debouncer
update(); // update and display
}
// sub-glyphs
#define _HEAD_ 15, 21, 21, 30
#define _BODY_ 15, 31, 31, 30
#define _FOOD_ 10, 21, 17, 14
//14, 17, 17, 14
#define _NONE_ 0, 0, 0, 0
// complete glyphs for loading into memory
// Only one food & one head glyph have to be loaded at a time.
// Body - Body
const uint8_t SYMBOL_BB[] PROGMEM = {_BODY_, _BODY_};
// Body - None
const uint8_t SYMBOL_BX[] PROGMEM = {_BODY_, _NONE_};
const uint8_t SYMBOL_XB[] PROGMEM = {_NONE_, _BODY_};
// Head - None
const uint8_t SYMBOL_HX[] PROGMEM = {_HEAD_, _NONE_};
const uint8_t SYMBOL_XH[] PROGMEM = {_NONE_, _HEAD_};
// Body - Head
const uint8_t SYMBOL_BH[] PROGMEM = {_BODY_, _HEAD_};
const uint8_t SYMBOL_HB[] PROGMEM = {_HEAD_, _BODY_};
// Head - Food
const uint8_t SYMBOL_HF[] PROGMEM = {_HEAD_, _FOOD_};
const uint8_t SYMBOL_FH[] PROGMEM = {_FOOD_, _HEAD_};
// Food - None
const uint8_t SYMBOL_FX[] PROGMEM = {_FOOD_, _NONE_};
const uint8_t SYMBOL_XF[] PROGMEM = {_NONE_, _FOOD_};
// Body - Food
const uint8_t SYMBOL_BF[] PROGMEM = {_BODY_, _FOOD_};
const uint8_t SYMBOL_FB[] PROGMEM = {_FOOD_, _BODY_};
// board block (snake, food...)
typedef enum {
bEMPTY = 0x00,
bHEAD = 0x01,
bFOOD = 0x02,
bBODY_LEFT = 0x80,
bBODY_RIGHT = 0x81,
bBODY_UP = 0x82,
bBODY_DOWN = 0x83,
} block_t;
// Snake direction
typedef enum {
dLEFT = 0x00,
dRIGHT = 0x01,
dUP = 0x02,
dDOWN = 0x03,
} dir_t;
// Coordinate on board
typedef struct {
int8_t x;
int8_t y;
} coord_t;
#define is_body(blk) (((blk) & 0x80) != 0)
#define mk_body_dir(dir) (0x80 + (dir))
// compare two coords
#define coord_eq(a, b) (((a).x == (b).x) && ((a).y == (b).y))
bool crashed;
uint8_t snake_len;
// y, x indexing
block_t board[ROWS][COLS];
coord_t head_pos;
coord_t tail_pos;
dir_t head_dir;
const uint8_t CODE_BB = 0;
const uint8_t CODE_BX = 1;
const uint8_t CODE_XB = 2;
const uint8_t CODE_H = 3; // glyph with head, dynamic
const uint8_t CODE_F = 4; // glyph with food, dynamic
const uint8_t CODE_XX = 32; // space
// Set a block in board
#define set_block_xy(x, y, block) do { board[y][x] = (block); } while(0)
#define get_block_xy(x, y) board[y][x]
#define get_block(pos) get_block_xy((pos).x, (pos).y)
#define set_block(pos, block) set_block_xy((pos).x, (pos).y, (block))
void init_cgram()
{
// those will be always the same
lcd_glyph_P(CODE_BB, SYMBOL_BB);
lcd_glyph_P(CODE_BX, SYMBOL_BX);
lcd_glyph_P(CODE_XB, SYMBOL_XB);
lcd_glyph_P(5, SYMBOL_XF);
}
void place_food()
{
while(1) {
const uint8_t xx = rand() % COLS;
const uint8_t yy = rand() % ROWS;
if (get_block_xy(xx, yy) == bEMPTY) {
set_block_xy(xx, yy, bFOOD);
break;
}
}
}
void init_gameboard()
{
//erase the board
for (uint8_t x = 0; x < COLS; x++) {
for (uint8_t y = 0; y < ROWS; y++) {
set_block_xy(x, y, bEMPTY);
}
}
lcd_clear();
tail_pos = (coord_t) {.x = 0, .y = 0};
set_block_xy(0, 0, bBODY_RIGHT);
set_block_xy(1, 0, bBODY_RIGHT);
set_block_xy(2, 0, bBODY_RIGHT);
set_block_xy(3, 0, bHEAD);
head_pos = (coord_t) {.x = 3, .y = 0};
snake_len = 4; // includes head
head_dir = dRIGHT;
crashed = false;
place_food();
}
uint8_t presc = 0;
bool restart_held;
bool pause_held;
bool paused;
void update()
{
if (debo_get_pin(D_RESTART)) {
if (!restart_held) {
// restart
init_gameboard();
presc = 0;
restart_held = true;
}
} else {
restart_held = false;
}
if (debo_get_pin(D_PAUSE)) {
if (!pause_held) {
paused ^= true;
pause_held = true;
}
} else {
pause_held = false;
}
if(!crashed && !paused) {
// resolve movement direction
if (debo_get_pin(D_LEFT))
head_dir = dLEFT;
else if (debo_get_pin(D_RIGHT))
head_dir = dRIGHT;
else if (debo_get_pin(D_UP))
head_dir = dUP;
else if (debo_get_pin(D_DOWN))
head_dir = dDOWN;
// time's up for a move
if (presc++ == STEP_DELAY) {
presc = 0;
// move snake
const coord_t oldpos = head_pos;
switch (head_dir) {
case dLEFT: head_pos.x--; break;
case dRIGHT: head_pos.x++; break;
case dUP: head_pos.y--; break;
case dDOWN: head_pos.y++; break;
}
bool do_move = false;
bool do_grow = false;
if (head_pos.x < 0 || head_pos.x >= COLS || head_pos.y < 0 || head_pos.y >= ROWS) {
// ouch, a wall!
crashed = true;
} else {
// check if tile occupied or not
if (coord_eq(head_pos, tail_pos)) {
// head moved in previous tail, that's OK.
do_move = true;
} else {
// moved to other tile than tail
switch (get_block(head_pos)) {
case bFOOD:
do_grow = true; // fall through
case bEMPTY:
do_move = true;
break;
default: // includes all BODY_xxx
crashed = true; // snake crashed into some block
}
}
}
if (do_move) {
// Move tail
if (do_grow) {
// let tail as is
snake_len++; // grow the counter
} else {
// tail dir
dir_t td = get_block(tail_pos) & 0xF;
// clean tail
set_block(tail_pos, bEMPTY);
// move tail based on old direction of tail block
switch (td) {
case dLEFT: tail_pos.x--; break;
case dRIGHT: tail_pos.x++; break;
case dUP: tail_pos.y--; break;
case dDOWN: tail_pos.y++; break;
}
}
// Move head
set_block(head_pos, bHEAD); // place head in new pos
set_block(oldpos, mk_body_dir(head_dir)); // directional body in old head pos
if (do_grow) {
// food eaten, place new
place_food();
}
}
}
} // end !crashed
// Render the board
for (uint8_t r = 0; r < ROWS / 2; r++) {
lcd_xy(0, r);
for (uint8_t c = 0; c < COLS; c++) {
const block_t t1 = get_block_xy(c, r * 2);
const block_t t2 = get_block_xy(c, (r * 2) + 1);
uint8_t code = '!'; // ! marks fail
if ((t1 == bEMPTY) && (t2 == bEMPTY)) {
code = CODE_XX;
if (crashed) code = '*';
} else if (is_body(t1) && is_body(t2))
code = CODE_BB;
else if (is_body(t1) && (t2 == bEMPTY))
code = CODE_BX;
else if (t1 == bEMPTY && is_body(t2))
code = CODE_XB;
else if ((t1 == bFOOD) || (t2 == bFOOD)) {
// one is food
code = CODE_F;
if (t1 == bFOOD) {
if (t2 == bEMPTY)
lcd_glyph_P(code, SYMBOL_FX);
else if (t2 == bHEAD)
lcd_glyph_P(code, SYMBOL_FH);
else if (is_body(t2))
lcd_glyph_P(code, SYMBOL_FB);
} else { // t2 is food
if (t1 == bEMPTY)
lcd_glyph_P(code, SYMBOL_XF);
else if (t1 == bHEAD)
lcd_glyph_P(code, SYMBOL_HF);
else if (is_body(t1))
lcd_glyph_P(code, SYMBOL_BF);
}
lcd_xy(c,r);
} else if ((t1 == bHEAD )|| (t2 == bHEAD)) {
// one is head
code = CODE_H;
if (t1 == bHEAD) {
if (t2 == bEMPTY)
lcd_glyph_P(code, SYMBOL_HX);
else if (is_body(t2))
lcd_glyph_P(code, SYMBOL_HB);
} else { // t2 is head
if (t1 == bEMPTY)
lcd_glyph_P(code, SYMBOL_XH);
else if (is_body(t1))
lcd_glyph_P(code, SYMBOL_BH);
}
lcd_xy(c,r);
}
lcd_putc(code);
}
}
}
void main()
{
init();
while(1); // timer does everything
}
Loading…
Cancel
Save