initial boilerplate

master
Ondřej Hruška 7 years ago
commit 9463a6ba2f
  1. 47
      .gitignore
  2. 25
      CMakeLists.txt
  3. 21
      LICENSE
  4. 138
      Makefile
  5. 78
      README.md
  6. 50
      avr-c-bp.pro
  7. 154
      lib/calc.h
  8. 277
      lib/iopins.c
  9. 213
      lib/iopins.h
  10. 21
      lib/nsdelay.h
  11. 62
      lib/spi.c
  12. 69
      lib/spi.h
  13. 83
      lib/usart.c
  14. 86
      lib/usart.h
  15. 45
      main.c
  16. 14
      style.astylerc

47
.gitignore vendored

@ -0,0 +1,47 @@
# Object files
*.o
*.ko
*.obj
*.elf
*.axf
# Precompiled Headers
*.gch
*.pch
# Libraries
*.lib
*.a
*.la
*.lo
# Shared objects (inc. Windows DLLs)
*.dll
*.so
*.so.*
*.dylib
# Executables
*.exe
*.out
*.app
*.i*86
*.x86_64
*.hex
# Debug files
*.dSYM/
# AVR specific stuff
*.lst
*.dis
*.disasm
*.list
*.eeprom
*.pre
# QtCreator user-specific
*.pro.user
.idea/
cmake-build-debug/

@ -0,0 +1,25 @@
cmake_minimum_required(VERSION 3.7)
project(firmware)
# Fake CMake config for CLion
set(CMAKE_CXX_STANDARD GNU99)
set(SOURCE_FILES
main.c
lib/calc.h
lib/iopins.c
lib/iopins.h
lib/nsdelay.h
lib/spi.c
lib/spi.h
lib/usart.c
lib/usart.h
)
include_directories(lib
/usr/avr/include/)
add_definitions(-D__AVR_ATmega328P__)
add_executable(firmware ${SOURCE_FILES})

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2016 Ondřej Hruška
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

@ -0,0 +1,138 @@
#############################################
# CPU type
MCU = atmega328p
# CPU frequency [Hz]
F_CPU = 16000000
# Fuses (refer to datasheet)
LFUSE = 0xFF
HFUSE = 0xDE
EFUSE = 0x05
# AVRDUDE settings
PROG_BAUD = 57600
PROG_DEV = /dev/ttyUSB0
PROG_TYPE = arduino
# Build the final AVRDUDE arguments
PROG_ARGS = -c $(PROG_TYPE) -p $(MCU) -b $(PROG_BAUD) -P $(PROG_DEV)
#############################################
# Main file
BINARY = main
# Obj files to be built <- add .o for any .c files you add!
OBJS = $(BINARY).o
OBJS += lib/usart.o
OBJS += lib/iopins.o
OBJS += lib/spi.o
# Dirs with header files
INCL_DIRS = . lib/
# Pre-defined macros
DEFS = -DF_CPU=$(F_CPU)UL
#############################################
# C flags
CFLAGS = -std=gnu99 -mmcu=$(MCU) $(DEFS) $(INCL_DIRS:%=-I%)
CFLAGS += -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -ffreestanding
CFLAGS += -Wall -Wno-main -Wno-strict-prototypes -Wno-comment
CFLAGS += -g2 -Wextra -Wfatal-errors -Wno-unused-but-set-variable
CFLAGS += -ffunction-sections -fdata-sections -Os
LDFLAGS = -Wl,--gc-sections -Wl,--relax -lm
#LD_FLAGS += -Wl,-u,vfprintf -lprintf_flt -lm ## for floating-point printf
#LD_FLAGS += -Wl,-u,vfprintf -lprintf_min ## for smaller printf
#############################################
## Defined programs / locations
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
AVRSIZE = avr-size
AVRDUDE = avrdude
JUNK = *.o *.d *.elf *.bin *.hex *.srec *.list *.lst *.map *.dis *.disasm *.eep *.eeprom *.lss
.SUFFIXES: .elf .bin .hex .lst .map .eeprom .pre
.SECONDEXPANSION:
.SECONDARY:
.PHONY: all elf bin hex lst pre ee eeprom dis size clean flash flashe shell fuses show_fuses set_default_fuses
all: hex size
elf: $(BINARY).elf
bin: $(BINARY).bin
hex: $(BINARY).hex
lst: $(BINARY).lst
pre: $(BINARY).pre
ee: $(BINARY).eeprom
eeprom: $(BINARY).eeprom
dis: lst
# Show how big the resulting program is
size: elf
$(AVRSIZE) -C --mcu=$(MCU) $(BINARY).elf
# --- Magic build targets ----------------
%.hex: %.elf
$(OBJCOPY) -R .eeprom -O ihex $< $@
%.elf %.map: $(OBJS)
$(CC) $(CFLAGS) $(LDFLAGS) $(OBJS) -o $(*).elf
%.pre: %.c
$(CC) $(CFLAGS) -E $(*).c --output $@
%.eeprom: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@
%.lst: %.elf
$(Q)$(OBJDUMP) -S $(*).elf > $(*).lst
%.o: %.c
$(CC) $(CFLAGS) -o $(*).o -c $(*).c
%.o: %.s
$(CC) $(CFLAGS) -o $(*).o -c $(*).s
# Clean all produced trash
clean:
rm -f $(JUNK)
cd lib && rm -f $(JUNK)
## === avrdude ===
flash: $(BINARY).hex
$(AVRDUDE) $(PROG_ARGS) -U flash:w:$<
flashe: $(BINARY).eeprom
$(AVRDUDE) $(PROG_ARGS) -U eeprom:w:$<
shell:
$(AVRDUDE) $(PROG_ARGS) -nt
# === fuses ===
# this may not work with the arduino programmer, I haven't tried.
FUSE_STRING = -U lfuse:w:$(LFUSE):m -U hfuse:w:$(HFUSE):m -U efuse:w:$(EFUSE):m
fuses:
$(AVRDUDE) $(PROG_ARGS) $(FUSE_STRING)
show_fuses:
$(AVRDUDE) $(PROG_ARGS) -nv

@ -0,0 +1,78 @@
# AVR C Boilerplate
This is a basic boilerplate for programming AVRs in C.
The project aims to make programming Arduinos in C fun by
providing support for basic functionality like GPIO and USART,
so you can start developing without having the datasheet open
all the time.
It is intended for **ATmega328P** (the chip in Arduinos),
but can be easily adapted to other parts.
## Requirements
Before you can start coding, you need to install a few software packages:
- `avrdude` - the flash tool
- `avr-gcc` - compiler
- `avr-libc` - libc implementation for AVR
- `avr-binutils` - utils for manipulating AVR binaries
- `make` - to run the Makefile
There's a good chance you already have `make`, the rest should be in your
distribution's repos.
If you're on Arch:
```
# pacman -S base-devel avr-gcc avr-binutils avr-libc avrdude
```
If you're on Mac, you should be able to pull the stuff with *brew*.
## Getting started
The provided `main.c` is a good starting point - it contains some simple demo code.
You can compile it with `make` and flash with `make flash`.
### Before you can flash
First, check that the `avrdude` options in the file are correct for your system - especially
the device and speed.
```ini
# AVRDUDE settings
PROG_BAUD = 57600
PROG_DEV = /dev/ttyUSB0
PROG_TYPE = arduino
# Build the final AVRDUDE arguments
PROG_ARGS = -c $(PROG_TYPE) -p $(MCU) -b $(PROG_BAUD) -P $(PROG_DEV)
```
- Adjust `PROG_DEV` to the device your board is connected to. On Linux it's usually
`/dev/ttyUSB0`, but it can also be `/dev/ttyACM0` or something else. On Mac, it'll be
`/dev/cu.xxx`. On Windows it's some `COMx`.<br>
Linux and Mac users can use `ls /dev` to see their devices. Windows users will find
this in their Device Manager.
- You may also adjust the baudrate (`PROG_BAUD`). Some boards need `115200`.
**TIP:** You can look what the Arduino IDE is using - it's running avrdude too.
### Adding new files
- If you *add a new C file* to the project, add an entry for it's `.o` (object file,
created by the compiler before linking) to the `OBJS` list in the Makefile.
- Similarly, if you *add a new folder with header files*, add it to `INCL_DIRS`.
- In case you need `printf` (or `printf` with floats), enable the appropriate LD_FLAGS
in the Makefile (it's well commented). Code size will - obviously - grow quite a bit.
## Notes
- The **Arduino UNO** bootloader has a quirk where `Double Speed Asynchronous Mode` for USART
is enabled by default, so if you set your baud rate to 9600, you'd really get 19200.<br>
We correct this in the `usart_init()` function to keep things consistent and to avoid
confusion.<br>
*If you wish to turn this on* however, you can do so by using `usart_set_2x(true)`.

@ -0,0 +1,50 @@
TEMPLATE = app
CONFIG += console
CONFIG -= app_bundle
CONFIG -= qt
INCLUDEPATH += \
lib \
/usr/avr/include
DEFINES += __AVR_ATmega328P__ F_CPU=16000000UL
DISTFILES += \
style.astylerc \
Makefile \
README.md \
LICENSE
HEADERS += \
lib/calc.h \
lib/iopins.h \
lib/usart.h \
lib/nsdelay.h \
lib/spi.h
SOURCES += \
lib/iopins.c \
main.c \
lib/usart.c \
lib/spi.c
# === Flags for the Clang code model===
#
#-Weverything
#-Wno-c++98-compat
#-Wno-c++98-compat-pedantic
#-Wno-unused-macros
#-Wno-newline-eof
#-Wno-exit-time-destructors
#-Wno-global-constructors
#-Wno-gnu-zero-variadic-macro-arguments
#-Wno-documentation
#-Wno-missing-prototypes
#-std=gnu99
#-Wno-gnu
#-Wno-format-nonliteral
#-Wno-conversion
#-Wno-pointer-sign
#-Wno-unknown-attributes
#-Wno-main-return-type
#-Wno-missing-noreturn

@ -0,0 +1,154 @@
#pragma once
//
// Bit and byte manipulation utilities
//
#include <stdint.h>
// --- Increment in range ---
// when overflown, wraps within range. Lower bound < upper bound.
// ..., upper bound excluded
#define inc_wrap(var, min, max) \
do { \
if ((var) >= ((max) - 1)) { \
(var) = (min); \
} else { \
(var)++; \
} \
} while(0)
// ..., upper bound included
#define inc_wrapi(var, min, max) inc_wrap((var), (min), (max) + 1)
// --- Decrement in range ---
// when underflown, wraps within range. Lower bound < upper bound.
// ..., upper bound excluded
#define dec_wrap(var, min, max) \
do { \
if ((var) <= (min)) { \
(var) = (max) - 1; \
} else { \
(var)--; \
} \
} while(0)
// ..., upper bound included
#define dec_wrapi(var, min, max) dec_wrap((var), (min), (max) + 1)
// --- Bit manipulation --
// Set bit
#define sbi(reg, n) do { (reg) |= (1 << (uint8_t)(n)); } while(0)
// Clear bit
#define cbi(reg, n) do { (reg) &= ~(1 << (uint8_t)(n)); } while(0)
// Get n-th bit
#define get_bit(reg, n) (((reg) >> (uint8_t)(n)) & 1)
// Test n-th bit (Can't use bit_is_set, as it's defined in sfr_def.h)
#define bit_is_high(reg, n) get_bit((reg), (n))
#define bit_is_low(reg, n) (!get_bit((reg), (n)))
// Write value to n-th bit
#define set_bit(reg, n, val) \
do { \
(reg) = ((reg) & ~(1 << (uint8_t)(n))) \
| (((val) & 1) << (uint8_t)(n)); \
} while(0)
// Invert n-th bit
#define toggle_bit(reg, n) do { (reg) ^= (1 << (uint8_t)(n)); } while(0)
// --- Bit manipulation with pointer to variable ---
// Set n-th bit in pointee
#define sbi_p(reg_p, n) do { (*(reg_p)) |= (1 << (uint8_t)(n)); } while(0)
// Clear n-th bit in pointee
#define cbi_p(reg_p, n) do { (*(reg_p)) &= ~(1 << (uint8_t)(n)); } while(0)
// Get n-th bit in pointee
#define get_bit_p(reg_p, n) ((*(reg_p) >> (uint8_t)(n)) & 1)
// Test n-th bit in pointee (Can't use bit_is_set, as it's redefined in sfr_def.h)
#define bit_is_high_p(reg_p, bit) get_bit_p(reg_p, bit)
#define bit_is_low_p(reg_p, bit) (!get_bit_p(reg_p, bit))
// Write value to a bit in pointee
#define set_bit_p(reg_p, n, value) \
do { \
*(reg_p) = (*(reg_p) & ~(1 << (uint8_t)(n))) \
| (((value) & 1) << (uint8_t)(n)); \
} while(0)
#define toggle_bit_p(reg_p, n) do { *(reg_p) ^= (1 << (uint8_t)(n)); } while(0)
// --- Nibble manipulation ---
// Replace nibble in a byte
#define set_low_nibble(reg, value) \
do { \
(reg) = ((reg) & 0xF0) \
| ((uint8_t)(value) & 0xF); \
} while(0)
#define set_high_nibble(reg, value) \
do { \
(reg) = ((reg) & 0x0F) \
| (((uint8_t)(value) & 0xF) << 4); \
} while(0)
#define set_low_nibble_p(reg_p, value) \
do { \
*(reg_p) = (*(reg_p) & 0xF0) \
| ((uint8_t)(value) & 0xF); \
} while(0)
#define set_high_nibble_p(reg_p, value) \
do { \
*(reg_p) = (*(reg_p) & 0x0F) \
| (((uint8_t)(value) & 0xF) << 4); \
} while(0)
#define low_nibble(x) ((uint8_t)(x) & 0x0F)
#define high_nibble(x) (((uint8_t)(x) & 0xF0) >> 4)
// --- Range tests ---
// Test if X is within low..high, regardless of bounds order
#define in_range(x, low, high) \
((low) < (high) ? ((x) >= (low) && (x) < (high)) \
: ((x) >= (high) && (x) < (low))) \
// ..., include greater bound
#define in_rangei(x, low, high) \
((low) < (high) ? ((x) >= (low) && (x) <= (high)) \
: ((x) >= (high) && (x) <= (low))) \
// Test if X in low..high, wrap around ends if needed.
#define in_range_wrap(x, low, high) \
(((low) < (high)) ? ((x) >= (low) && (x) < (high)) \
: ((x) >= (low) || (x) < (high)))
// ..., include upper bound
#define in_range_wrapi(x, low, high) \
(((low) <= (high)) ? ((x) >= (low) && (x) <= (high)) \
: ((x) >= (low) || (x) <= (high)))

@ -0,0 +1,277 @@
#include <avr/io.h>
#include <stdbool.h>
#include <stdint.h>
#include "calc.h"
#include "iopins.h"
void set_dir_n(uint8_t pin, uint8_t d)
{
switch(pin) {
case 0: set_dir(0, d); return;
case 1: set_dir(1, d); return;
case 2: set_dir(2, d); return;
case 3: set_dir(3, d); return;
case 4: set_dir(4, d); return;
case 5: set_dir(5, d); return;
case 6: set_dir(6, d); return;
case 7: set_dir(7, d); return;
case 8: set_dir(8, d); return;
case 9: set_dir(9, d); return;
case 10: set_dir(10, d); return;
case 11: set_dir(11, d); return;
case 12: set_dir(12, d); return;
case 13: set_dir(13, d); return;
case 14: set_dir(14, d); return;
case 15: set_dir(15, d); return;
case 16: set_dir(16, d); return;
case 17: set_dir(17, d); return;
case 18: set_dir(18, d); return;
case 19: set_dir(19, d); return;
case 20: set_dir(20, d); return;
case 21: set_dir(21, d); return;
}
}
void as_input_n(uint8_t pin)
{
switch(pin) {
case 0: as_input(0); return;
case 1: as_input(1); return;
case 2: as_input(2); return;
case 3: as_input(3); return;
case 4: as_input(4); return;
case 5: as_input(5); return;
case 6: as_input(6); return;
case 7: as_input(7); return;
case 8: as_input(8); return;
case 9: as_input(9); return;
case 10: as_input(10); return;
case 11: as_input(11); return;
case 12: as_input(12); return;
case 13: as_input(13); return;
case 14: as_input(14); return;
case 15: as_input(15); return;
case 16: as_input(16); return;
case 17: as_input(17); return;
case 18: as_input(18); return;
case 19: as_input(19); return;
case 20: as_input(20); return;
case 21: as_input(21); return;
}
}
void as_input_pu_n(uint8_t pin)
{
switch(pin) {
case 0: as_input_pu(0); return;
case 1: as_input_pu(1); return;
case 2: as_input_pu(2); return;
case 3: as_input_pu(3); return;
case 4: as_input_pu(4); return;
case 5: as_input_pu(5); return;
case 6: as_input_pu(6); return;
case 7: as_input_pu(7); return;
case 8: as_input_pu(8); return;
case 9: as_input_pu(9); return;
case 10: as_input_pu(10); return;
case 11: as_input_pu(11); return;
case 12: as_input_pu(12); return;
case 13: as_input_pu(13); return;
case 14: as_input_pu(14); return;
case 15: as_input_pu(15); return;
case 16: as_input_pu(16); return;
case 17: as_input_pu(17); return;
case 18: as_input_pu(18); return;
case 19: as_input_pu(19); return;
case 20: as_input_pu(20); return;
case 21: as_input_pu(21); return;
}
}
void as_output_n(uint8_t pin)
{
switch(pin) {
case 0: as_output(0); return;
case 1: as_output(1); return;
case 2: as_output(2); return;
case 3: as_output(3); return;
case 4: as_output(4); return;
case 5: as_output(5); return;
case 6: as_output(6); return;
case 7: as_output(7); return;
case 8: as_output(8); return;
case 9: as_output(9); return;
case 10: as_output(10); return;
case 11: as_output(11); return;
case 12: as_output(12); return;
case 13: as_output(13); return;
case 14: as_output(14); return;
case 15: as_output(15); return;
case 16: as_output(16); return;
case 17: as_output(17); return;
case 18: as_output(18); return;
case 19: as_output(19); return;
case 20: as_output(20); return;
case 21: as_output(21); return;
}
}
void pin_set_n(uint8_t pin, uint8_t v)
{
switch(pin) {
case 0: pin_set(0, v); return;
case 1: pin_set(1, v); return;
case 2: pin_set(2, v); return;
case 3: pin_set(3, v); return;
case 4: pin_set(4, v); return;
case 5: pin_set(5, v); return;
case 6: pin_set(6, v); return;
case 7: pin_set(7, v); return;
case 8: pin_set(8, v); return;
case 9: pin_set(9, v); return;
case 10: pin_set(10, v); return;
case 11: pin_set(11, v); return;
case 12: pin_set(12, v); return;
case 13: pin_set(13, v); return;
case 14: pin_set(14, v); return;
case 15: pin_set(15, v); return;
case 16: pin_set(16, v); return;
case 17: pin_set(17, v); return;
case 18: pin_set(18, v); return;
case 19: pin_set(19, v); return;
case 20: pin_set(20, v); return;
case 21: pin_set(21, v); return;
}
}
void pin_down_n(uint8_t pin)
{
switch(pin) {
case 0: pin_down(0); return;
case 1: pin_down(1); return;
case 2: pin_down(2); return;
case 3: pin_down(3); return;
case 4: pin_down(4); return;
case 5: pin_down(5); return;
case 6: pin_down(6); return;
case 7: pin_down(7); return;
case 8: pin_down(8); return;
case 9: pin_down(9); return;
case 10: pin_down(10); return;
case 11: pin_down(11); return;
case 12: pin_down(12); return;
case 13: pin_down(13); return;
case 14: pin_down(14); return;
case 15: pin_down(15); return;
case 16: pin_down(16); return;
case 17: pin_down(17); return;
case 18: pin_down(18); return;
case 19: pin_down(19); return;
case 20: pin_down(20); return;
case 21: pin_down(21); return;
}
}
void pin_up_n(uint8_t pin)
{
switch(pin) {
case 0: pin_up(0); return;
case 1: pin_up(1); return;
case 2: pin_up(2); return;
case 3: pin_up(3); return;
case 4: pin_up(4); return;
case 5: pin_up(5); return;
case 6: pin_up(6); return;
case 7: pin_up(7); return;
case 8: pin_up(8); return;
case 9: pin_up(9); return;
case 10: pin_up(10); return;
case 11: pin_up(11); return;
case 12: pin_up(12); return;
case 13: pin_up(13); return;
case 14: pin_up(14); return;
case 15: pin_up(15); return;
case 16: pin_up(16); return;
case 17: pin_up(17); return;
case 18: pin_up(18); return;
case 19: pin_up(19); return;
case 20: pin_up(20); return;
case 21: pin_up(21); return;
}
}
void pin_toggle_n(uint8_t pin)
{
switch(pin) {
case 0: pin_toggle(0); return;
case 1: pin_toggle(1); return;
case 2: pin_toggle(2); return;
case 3: pin_toggle(3); return;
case 4: pin_toggle(4); return;
case 5: pin_toggle(5); return;
case 6: pin_toggle(6); return;
case 7: pin_toggle(7); return;
case 8: pin_toggle(8); return;
case 9: pin_toggle(9); return;
case 10: pin_toggle(10); return;
case 11: pin_toggle(11); return;
case 12: pin_toggle(12); return;
case 13: pin_toggle(13); return;
case 14: pin_toggle(14); return;
case 15: pin_toggle(15); return;
case 16: pin_toggle(16); return;
case 17: pin_toggle(17); return;
case 18: pin_toggle(18); return;
case 19: pin_toggle(19); return;
case 20: pin_toggle(20); return;
case 21: pin_toggle(21); return;
}
}
bool pin_read_n(uint8_t pin)
{
switch(pin) {
case 0: return pin_read(0);
case 1: return pin_read(1);
case 2: return pin_read(2);
case 3: return pin_read(3);
case 4: return pin_read(4);
case 5: return pin_read(5);
case 6: return pin_read(6);
case 7: return pin_read(7);
case 8: return pin_read(8);
case 9: return pin_read(9);
case 10: return pin_read(10);
case 11: return pin_read(11);
case 12: return pin_read(12);
case 13: return pin_read(13);
case 14: return pin_read(14);
case 15: return pin_read(15);
case 16: return pin_read(16);
case 17: return pin_read(17);
case 18: return pin_read(18);
case 19: return pin_read(19);
case 20: return pin_read(20);
case 21: return pin_read(21);
}
return false;
}
bool pin_is_low_n(uint8_t pin)
{
return !pin_read_n(pin);
}
bool pin_is_high_n(uint8_t pin)
{
return pin_read_n(pin);
}

@ -0,0 +1,213 @@
#pragma once
//
// * Utilities for pin aliasing / numbering. *
//
// Designed for Arduino.
//
// If you know the pin number beforehand, you can use the macros.
//
// If you need to use a variable for pin number, use the `_n` functions.
// They are much slower, so always check if you really need them
// - and they aren't fit for things where precise timing is required.
//
#include <avr/io.h>
#include <stdbool.h>
#include <stdint.h>
#include "calc.h"
// type: pointer to port
typedef volatile uint8_t* PORT_P;
/** Pin numbering reference */
#define D0 0
#define D1 1
#define D2 2
#define D3 3
#define D4 4
#define D5 5
#define D6 6
#define D7 7
#define D8 8
#define D9 9
#define D10 10
#define D11 11
#define D12 12
#define D13 13
#define D14 14
#define D15 15
#define D16 16
#define D17 17
#define D18 18
#define D19 19
#define D20 20
#define D21 21
#define A0 14
#define A1 15
#define A2 16
#define A3 17
#define A4 18
#define A5 19
#define A6 20
#define A7 21
#define _ddr(pin) _DDR_##pin
#define _pin(pin) _PIN_##pin
#define _pn(pin) _PN_##pin
#define _port(pin) _PORT_##pin
/** Set pin direction */
#define set_dir(pin, d) set_bit( _ddr(pin), _pn(pin), d )
void set_dir_n(const uint8_t pin, const uint8_t d);
/** Configure pin as input */
#define as_input(pin) cbi( _ddr(pin), _pn(pin) )
void as_input_n(const uint8_t pin);
/** Configure pin as input, with pull-up enabled */
#define as_input_pu(pin) { as_input(pin); pin_up(pin); }
void as_input_pu_n(const uint8_t pin);
/** Configure pin as output */
#define as_output(pin) sbi( _ddr(pin), _pn(pin) )
void as_output_n(const uint8_t pin);
/** Write value to a pin */
#define pin_set(pin, v) set_bit( _port(pin), _pn(pin), v )
void pin_set_n(const uint8_t pin, const uint8_t v);
/** Write 0 to a pin */
#define pin_down(pin) cbi( _port(pin), _pn(pin) )
void pin_down_n(const uint8_t pin);
/** Write 1 to a pin */
#define pin_up(pin) sbi( _port(pin), _pn(pin) )
void pin_up_n(uint8_t pin);
/** Toggle a pin state */
#define pin_toggle(pin) sbi( _pin(pin), _pn(pin) )
void pin_toggle_n(uint8_t pin);
/** Read a pin value */
#define pin_read(pin) get_bit( _pin(pin), _pn(pin) )
bool pin_read_n(uint8_t pin);
/** CHeck if pin is low */
#define pin_is_low(pin) (get_pin(pin) == 0)
bool pin_is_low_n(uint8_t pin);
/** CHeck if pin is high */
#define pin_is_high(pin) (get_pin(pin) != 0)
bool pin_is_high_n(uint8_t pin);
// Helper macros
#define _PORT_0 PORTD
#define _PORT_1 PORTD
#define _PORT_2 PORTD
#define _PORT_3 PORTD
#define _PORT_4 PORTD
#define _PORT_5 PORTD
#define _PORT_6 PORTD
#define _PORT_7 PORTD
#define _PORT_8 PORTB
#define _PORT_9 PORTB
#define _PORT_10 PORTB
#define _PORT_11 PORTB
#define _PORT_12 PORTB
#define _PORT_13 PORTB
#define _PORT_14 PORTC
#define _PORT_15 PORTC
#define _PORT_16 PORTC
#define _PORT_17 PORTC
#define _PORT_18 PORTC
#define _PORT_19 PORTC
#define _PORT_20 PORTC
#define _PORT_21 PORTC
#define _PIN_0 PIND
#define _PIN_1 PIND
#define _PIN_2 PIND
#define _PIN_3 PIND
#define _PIN_4 PIND
#define _PIN_5 PIND
#define _PIN_6 PIND
#define _PIN_7 PIND
#define _PIN_8 PINB
#define _PIN_9 PINB
#define _PIN_10 PINB
#define _PIN_11 PINB
#define _PIN_12 PINB
#define _PIN_13 PINB
#define _PIN_14 PINC
#define _PIN_15 PINC
#define _PIN_16 PINC
#define _PIN_17 PINC
#define _PIN_18 PINC
#define _PIN_19 PINC
#define _PIN_20 PINC
#define _PIN_21 PINC
#define _DDR_0 DDRD
#define _DDR_1 DDRD
#define _DDR_2 DDRD
#define _DDR_3 DDRD
#define _DDR_4 DDRD
#define _DDR_5 DDRD
#define _DDR_6 DDRD
#define _DDR_7 DDRD
#define _DDR_8 DDRB
#define _DDR_9 DDRB
#define _DDR_10 DDRB
#define _DDR_11 DDRB
#define _DDR_12 DDRB
#define _DDR_13 DDRB
#define _DDR_14 DDRC
#define _DDR_15 DDRC
#define _DDR_16 DDRC
#define _DDR_17 DDRC
#define _DDR_18 DDRC
#define _DDR_19 DDRC
#define _DDR_20 DDRC
#define _DDR_21 DDRC
#define _PN_0 0
#define _PN_1 1
#define _PN_2 2
#define _PN_3 3
#define _PN_4 4
#define _PN_5 5
#define _PN_6 6
#define _PN_7 7
#define _PN_8 0
#define _PN_9 1
#define _PN_10 2
#define _PN_11 3
#define _PN_12 4
#define _PN_13 5
#define _PN_14 0
#define _PN_15 1
#define _PN_16 2
#define _PN_17 3
#define _PN_18 4
#define _PN_19 5
#define _PN_20 6
#define _PN_21 7

@ -0,0 +1,21 @@
#pragma once
//
// Functions for precise delays (nanoseconds / cycles)
//
#include <avr/io.h>
#include <util/delay_basic.h>
#include <stdint.h>
/* Convert nanoseconds to cycle count */
#define ns2cycles(ns) ( (ns) / (1000000000L / (signed long) F_CPU) )
/** Wait c cycles */
#define delay_c(c) (((c) > 0) ? __builtin_avr_delay_cycles(c) : __builtin_avr_delay_cycles(0))
/** Wait n nanoseconds, plus c cycles */
#define delay_ns_c(ns, c) delay_c(ns2cycles(ns) + (c))
/** Wait n nanoseconds */
#define delay_ns(ns) delay_c(ns2cycles(ns))

@ -0,0 +1,62 @@
#include <avr/io.h>
#include <stdint.h>
#include <stdbool.h>
#include "iopins.h"
#include "spi.h"
/** Init SPI (for SD card communication) */
void spi_init_master(enum SPI_order order, enum SPI_cpol cpol, enum SPI_cpha cpha, enum SPI_clk_div clkdiv)
{
as_output(PIN_SS); // SS output - we control slave
as_output(PIN_MOSI); // MOSI output - we talk to slave
as_output(PIN_SCK); // SCK output - we're generating clock
// MISO is configured automatically as input
SPCR = 0;
SPCR |= (1 << MSTR);
SPCR |= (order << DORD);
SPCR |= (cpol << CPOL);
SPCR |= (cpha << CPHA);
// speed
SPCR |= (clkdiv & 0b11);
SPSR = (bool)(clkdiv & 0b100); // write SPI2X flag
// enable SPI
SPCR |= (1 << SPE);
}
/** Init SPI (for SD card communication) */
void spi_init_slave(enum SPI_order order, enum SPI_cpol cpol, enum SPI_cpha cpha)
{
as_output(PIN_MISO); // we're listening to master
// MOSI, SS, SCK are configured automatically
SPCR = 0;
SPCR |= (order << DORD);
SPCR |= (cpol << CPOL);
SPCR |= (cpha << CPHA);
// enable SPI
SPCR |= (1 << SPE);
}
/** Write a byte to SPI. Returns received byte. */
uint8_t spi_send(uint8_t byte)
{
SPDR = byte;
while (bit_is_low(SPSR, SPIF));
return SPDR;
}
/** Receive (as slave). Blocking. */
uint8_t spi_receive(uint8_t reply)
{
SPDR = reply;
while (bit_is_low(SPSR, SPIF));
return SPDR;
}

@ -0,0 +1,69 @@
#pragma once
#include <avr/io.h>
#include <stdint.h>
#include "calc.h"
#include "iopins.h"
#define PIN_MISO 12
#define PIN_MOSI 11
#define PIN_SCK 13
#define PIN_SS 10
/** Bit order */
enum SPI_order {
SPI_LSB_FIRST = 0,
SPI_MSB_FIRST = 1
};
/** Clock polarity */
enum SPI_cpol {
CPOL_0 = 0,
CPOL_1 = 1
};
/** Clock phase */
enum SPI_cpha {
CPHA_0 = 0,
CPHA_1 = 1
};
/** Clock prescaller <SPI2X><SPR1><SPR0> */
enum SPI_clk_div {
SPI_DIV_2 = 0b100, // 2x (master only, can't receive at this speed)
SPI_DIV_4 = 0b000,
SPI_DIV_8 = 0b101, // 2x
SPI_DIV_16 = 0b001,
SPI_DIV_32 = 0b110, // 2x
SPI_DIV_64 = 0b010,
SPI_DIV_128 = 0b011
};
/** Set SS to active state (LOW) */
#define spi_ss_enable() pin_down(PIN_SS)
/** Set SS to disabled state (HIGH) */
#define spi_ss_disable() pin_up(PIN_SS)
/** Enable SPI ISR */
#define spi_isr_enable(yes) set_bit(SPCR, SPIE, yes)
/** Init SPI (for SD card communication) */
void spi_init_master(enum SPI_order order, enum SPI_cpol cpol, enum SPI_cpha cpha, enum SPI_clk_div clkdiv);
/** Init SPI (for SD card communication) */
void spi_init_slave(enum SPI_order order, enum SPI_cpol cpol, enum SPI_cpha cpha);
/** Write a byte to SPI. Returns received byte. */
uint8_t spi_send(uint8_t byte);
/** Receive (as slave). Blocking. */
uint8_t spi_receive(uint8_t reply);

@ -0,0 +1,83 @@
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "calc.h"
#include "usart.h"
void usart_init(uint16_t ubrr)
{
/*Set baud rate */
UBRR0H = (uint8_t)(ubrr >> 8);
UBRR0L = (uint8_t) ubrr;
// Enable Rx and Tx
UCSR0B = (1 << RXEN0) | (1 << TXEN0);
// Clear U2X0
cbi(UCSR0A, U2X0);
// 8-bit data, 1 stop bit
UCSR0C = (0b11 << UCSZ00);
}
/** Set Double Speed Asynchronous mode */
void usart_set_2x(bool set)
{
set_bit(UCSR0A, U2X0, set);
}
/** Send byte over USART */
void usart_tx(uint8_t data)
{
// Wait for transmit buffer
while (!usart_tx_ready());
// send it
UDR0 = data;
}
/** Receive one byte over USART */
uint8_t usart_rx(void)
{
// Wait for data to be received
while (!usart_rx_ready());
// Get and return received data from buffer
return UDR0;
}
/** Send string over USART */
void usart_puts(const char* str)
{
while (*str) {
usart_tx(*str++);
}
}
/** Send progmem string over USART */
void usart_puts_P(const char* str)
{
char c;
while ((c = pgm_read_byte(str++))) {
usart_tx(c);
}
}
/** Clear receive buffer */
void usart_flush_rx(void)
{
uint8_t dummy;
while (bit_is_high(UCSR0A, RXC0)) {
dummy = UDR0;
}
}

@ -0,0 +1,86 @@
#pragma once
//
// Utilities for UART communication.
//
// First, init uart with usart_init().
// Then enable interrupts you want with usart_XXX_isr_enable().
//
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <stdbool.h>
#include <stdint.h>
#include "calc.h"
/* USART BAUD RATE REGISTER values at 16 MHz */
enum {
BAUD_9600 = 103,
BAUD_14400 = 68,
BAUD_19200 = 51,
BAUD_28800 = 34,
BAUD_38400 = 25,
BAUD_57600 = 16,
BAUD_76800 = 12,
BAUD_115200 = 8,
BAUD_250k = 3,
BAUD_500k = 1,
BAUD_1M = 0,
};
/** Init UART with a UBRR value - can use the BAUD_* constants for 16 MHz */
void usart_init(uint16_t ubrr);
/** Set Double Speed Asynchronous mode on or off */
void usart_set_2x(bool set);
/** Check if there's a byte in the RX register */
#define usart_rx_ready() bit_is_high(UCSR0A, RXC0)
/** Check if USART is ready to accept new byte to send */
#define usart_tx_ready() bit_is_high(UCSR0A, UDRE0)
// ---- Enable UART interrupts ------------
/** Enable or disable RX ISR */
#define usart_isr_rx_enable(yes) set_bit(UCSR0B, RXCIE0, (yes))
/** Enable or disable TX ISR (all data sent) */
#define usart_isr_tx_enable(yes) set_bit(UCSR0B, TXCIE0, (yes))
/** Enable or disable DRE ISR (data register empty) */
#define usart_isr_dre_enable(yes) set_bit(UCSR0B, UDRIE0, (yes))
// ---- Basic IO --------------------------
/** Send byte over USART */
void usart_tx(uint8_t data);
/** Receive one byte over USART */
uint8_t usart_rx(void);
/** Clear receive buffer */
void usart_flush_rx(void);
// ---- Strings ---------------------------
/** Send string over UART */
void usart_puts(const char* str);
/** Send progmem string `PSTR("foobar")` over UART */
void usart_puts_P(const char* str);

@ -0,0 +1,45 @@
#include <avr/io.h> // register definitions
#include <avr/pgmspace.h> // storing data in program memory
#include <avr/interrupt.h> // interrupt vectors
#include <util/delay.h> // delay functions
#include <stdint.h> // C header for int types like uint8_t
#include <stdbool.h> // C header for the bool type
// Include stuff from the library
#include "lib/iopins.h"
#include "lib/usart.h"
// Pins
#define LED 13
// UART receive handler
ISR(USART_RX_vect)
{
// "ECHO" function:
uint8_t b = usart_rx();
usart_tx(b); // send back
}
void main()
{
usart_init(BAUD_115200);
usart_isr_rx_enable(true); // enable RX interrupt handler
// configure pins
as_output(LED);
// globally enable interrupts (for the USART_RX handler)
sei();
while (1) {
usart_puts("Hello World!\r\n");
pin_toggle(13); // blink the LED
_delay_ms(500);
}
}

@ -0,0 +1,14 @@
style=kr
indent=tab
max-instatement-indent=60
convert-tabs
indent-switches
keep-one-line-statements
pad-oper
unpad-paren
pad-header
verbose
Loading…
Cancel
Save