You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
165 lines
4.8 KiB
165 lines
4.8 KiB
/*
|
|
* Copyright 2023 jacqueline <me@jacqueline.id.au>
|
|
*
|
|
* SPDX-License-Identifier: GPL-3.0-only
|
|
*/
|
|
|
|
#include "tasks.hpp"
|
|
|
|
#include <functional>
|
|
|
|
#include "esp_heap_caps.h"
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/portmacro.h"
|
|
|
|
#include "memory_resource.hpp"
|
|
|
|
namespace tasks {
|
|
|
|
template <Type t>
|
|
auto Name() -> std::pmr::string;
|
|
|
|
template <>
|
|
auto Name<Type::kUi>() -> std::pmr::string {
|
|
return "ui";
|
|
}
|
|
template <>
|
|
auto Name<Type::kAudioDecoder>() -> std::pmr::string {
|
|
return "audio_dec";
|
|
}
|
|
template <>
|
|
auto Name<Type::kAudioConverter>() -> std::pmr::string {
|
|
return "audio_conv";
|
|
}
|
|
|
|
template <Type t>
|
|
auto AllocateStack() -> cpp::span<StackType_t>;
|
|
|
|
// Decoders often require a very large amount of stack space, since they aren't
|
|
// usually written with embedded use cases in mind.
|
|
template <>
|
|
auto AllocateStack<Type::kAudioDecoder>() -> cpp::span<StackType_t> {
|
|
constexpr std::size_t size = 24 * 1024;
|
|
static StackType_t sStack[size];
|
|
return {sStack, size};
|
|
}
|
|
// LVGL requires only a relatively small stack. However, it can be allocated in
|
|
// PSRAM so we give it a bit of headroom for safety.
|
|
template <>
|
|
auto AllocateStack<Type::kUi>() -> cpp::span<StackType_t> {
|
|
constexpr std::size_t size = 16 * 1024;
|
|
static StackType_t sStack[size];
|
|
return {sStack, size};
|
|
}
|
|
template <>
|
|
// PCM conversion and resampling uses a very small amount of stack. It works
|
|
// entirely with PSRAM-allocated buffers, so no real speed gain from allocating
|
|
// it internally.
|
|
auto AllocateStack<Type::kAudioConverter>() -> cpp::span<StackType_t> {
|
|
constexpr std::size_t size = 4 * 1024;
|
|
static StackType_t sStack[size];
|
|
return {sStack, size};
|
|
}
|
|
// Background workers receive huge stacks in PSRAM. This is mostly to faciliate
|
|
// use of LevelDB from any bg worker; Leveldb is designed for non-embedded use
|
|
// cases, where large stack usage isn't so much of a concern. It therefore uses
|
|
// an eye-wateringly large amount of stack.
|
|
template <>
|
|
auto AllocateStack<Type::kBackgroundWorker>() -> cpp::span<StackType_t> {
|
|
std::size_t size = 64 * 1024;
|
|
return {static_cast<StackType_t*>(heap_caps_malloc(size, MALLOC_CAP_SPIRAM)),
|
|
size};
|
|
}
|
|
|
|
// 2 KiB in internal ram
|
|
// 612 KiB in external ram.
|
|
|
|
/*
|
|
* Please keep the priorities below in descending order for better readability.
|
|
*/
|
|
|
|
template <Type t>
|
|
auto Priority() -> UBaseType_t;
|
|
|
|
// Realtime audio is the entire point of this device, so give these tasks the
|
|
// highest priority.
|
|
template <>
|
|
auto Priority<Type::kAudioDecoder>() -> UBaseType_t {
|
|
return configMAX_PRIORITIES - 1;
|
|
}
|
|
template <>
|
|
auto Priority<Type::kAudioConverter>() -> UBaseType_t {
|
|
return configMAX_PRIORITIES - 1;
|
|
}
|
|
// After audio issues, UI jank is the most noticeable kind of scheduling-induced
|
|
// slowness that the user is likely to notice or care about. Therefore we place
|
|
// this task directly below audio in terms of priority.
|
|
template <>
|
|
auto Priority<Type::kUi>() -> UBaseType_t {
|
|
return 10;
|
|
}
|
|
// Database interactions are all inherently async already, due to their
|
|
// potential for disk access. The user likely won't notice or care about a
|
|
// couple of ms extra delay due to scheduling, so give this task the lowest
|
|
// priority.
|
|
template <>
|
|
auto Priority<Type::kBackgroundWorker>() -> UBaseType_t {
|
|
return 1;
|
|
}
|
|
|
|
auto PersistentMain(void* fn) -> void {
|
|
auto* function = reinterpret_cast<std::function<void(void)>*>(fn);
|
|
std::invoke(*function);
|
|
assert("persistent task quit!" == 0);
|
|
vTaskDelete(NULL);
|
|
}
|
|
|
|
auto WorkerPool::Main(void* q) {
|
|
QueueHandle_t queue = reinterpret_cast<QueueHandle_t>(q);
|
|
while (1) {
|
|
WorkItem item;
|
|
if (xQueueReceive(queue, &item, portMAX_DELAY)) {
|
|
std::invoke(*item);
|
|
delete item;
|
|
}
|
|
}
|
|
}
|
|
|
|
static constexpr size_t kNumWorkers = 4;
|
|
static constexpr size_t kMaxPendingItems = 8;
|
|
|
|
WorkerPool::WorkerPool()
|
|
: queue_(xQueueCreate(kMaxPendingItems, sizeof(WorkItem))) {
|
|
for (size_t i = 0; i < kNumWorkers; i++) {
|
|
auto stack = AllocateStack<Type::kBackgroundWorker>();
|
|
// Task buffers must be in internal ram. Thankfully they're fairly small.
|
|
auto buffer = reinterpret_cast<StaticTask_t*>(heap_caps_malloc(
|
|
sizeof(StaticTask_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT));
|
|
|
|
std::string name = "worker_" + std::to_string(i);
|
|
|
|
xTaskCreateStatic(&Main, name.c_str(), stack.size(), queue_,
|
|
Priority<Type::kBackgroundWorker>(), stack.data(),
|
|
buffer);
|
|
}
|
|
}
|
|
|
|
WorkerPool::~WorkerPool() {
|
|
// This should never happen!
|
|
assert("worker pool destroyed" == 0);
|
|
}
|
|
|
|
template <>
|
|
auto WorkerPool::Dispatch(const std::function<void(void)> fn)
|
|
-> std::future<void> {
|
|
std::shared_ptr<std::promise<void>> promise =
|
|
std::make_shared<std::promise<void>>();
|
|
WorkItem item = new std::function<void(void)>([=]() {
|
|
std::invoke(fn);
|
|
promise->set_value();
|
|
});
|
|
xQueueSend(queue_, &item, portMAX_DELAY);
|
|
return promise->get_future();
|
|
}
|
|
|
|
} // namespace tasks
|
|
|