Fork of Tangara with customizations
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
tangara-fw/src/locale/strxfrm_l.c

641 lines
19 KiB

/* Copyright (C) 1995-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Written by Ulrich Drepper <drepper@gnu.org>, 1995.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include "strxfrm.h"
#include <assert.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>
#include "esp_log.h"
#include "weight.h"
static const char kTag[] = "strxfrm";
#ifndef STRING_TYPE
#define STRING_TYPE char
#define USTRING_TYPE unsigned char
#define STRLEN strlen
#define STPNCPY stpncpy
#define L(arg) arg
#endif
#define CONCAT(a, b) CONCAT1(a, b)
#define CONCAT1(a, b) a##b
/* Maximum string size that is calculated with cached indices. Right now this
is an arbitrary value open to optimizations. SMALL_STR_SIZE * 4 has to be
lower than __MAX_ALLOCA_CUTOFF. Keep localedata/xfrm-test.c in sync. */
#define SMALL_STR_SIZE 4095
/* We know three kinds of collation sorting rules. */
enum coll_sort_rule {
illegal_0__,
sort_forward,
sort_backward,
illegal_3__,
sort_position,
sort_forward_position,
sort_backward_position,
sort_mask
};
enum collate_element {
COLLATE_NRULES = 0,
COLLATE_RULESETS,
COLLATE_TABLEMB,
COLLATE_WEIGHTMB,
COLLATE_EXTRAMB,
COLLATE_INDIRECTMB,
COLLATE_GAP1,
COLLATE_GAP2,
COLLATE_GAP3,
COLLATE_TABLEWC,
COLLATE_WEIGHTWC,
COLLATE_EXTRAWC,
COLLATE_INDIRECTWC,
COLLATE_SYMB_HASH_SIZEMB,
COLLATE_SYMB_TABLEMB,
COLLATE_SYMB_EXTRAMB,
COLLATE_COLLSEQMB,
COLLATE_COLLSEQWC,
COLLATE_CODESET,
// Not a real element; used to know how many elements there are.
COLLATE_LAST
};
typedef enum collate_element collate_element_t;
bool parse_locale_data(const void* raw_data, size_t size, locale_data_t* out) {
const struct {
unsigned int magic;
unsigned int nstrings;
unsigned int strindex[0];
}* const header = raw_data;
if (header->magic != 0x20051017) {
ESP_LOGE(kTag, "file magic incorrect (was %x)", header->magic);
return false;
}
if (sizeof(*header) + header->nstrings * sizeof(unsigned int) >= size) {
ESP_LOGE(kTag, "file was too small to contain header");
return false;
}
if (header->nstrings != COLLATE_LAST) {
ESP_LOGE(kTag, "file has incorrect number of elements (was %u, wanted %u)",
header->nstrings, COLLATE_LAST);
return false;
}
// The LC_COLLATE partition appears to contain data in the correct shape.
// Pull out pointers to the various attributes it contains.
const void* offsets[COLLATE_LAST];
for (size_t i = 0; i < header->nstrings; i++) {
size_t offset = header->strindex[i];
if (offset > size) {
ESP_LOGE(kTag, "element offset (%u) exceeds file size", offset);
return false;
}
offsets[i] = (raw_data + offset);
}
// Now parse those pointers into the output struct.
out->nrules = *(const unsigned int*)offsets[COLLATE_NRULES];
out->rulesets = (unsigned char*)offsets[COLLATE_RULESETS];
out->table = (int32_t*)offsets[COLLATE_TABLEMB];
out->weights = (unsigned char*)offsets[COLLATE_WEIGHTMB];
out->extra = (unsigned char*)offsets[COLLATE_EXTRAMB];
out->indirect = (int32_t*)offsets[COLLATE_INDIRECTMB];
assert(((uintptr_t)out->table) % __alignof__(out->table[0]) == 0);
assert(((uintptr_t)out->weights) % __alignof__(out->weights[0]) == 0);
assert(((uintptr_t)out->extra) % __alignof__(out->extra[0]) == 0);
assert(((uintptr_t)out->indirect) % __alignof__(out->indirect[0]) == 0);
return true;
}
/* We need UTF-8 encoding of numbers. */
static int utf8_encode(char* buf, int val) {
int retval;
if (val < 0x80) {
*buf++ = (char)val;
retval = 1;
} else {
int step;
for (step = 2; step < 6; ++step)
if ((val & (~(uint32_t)0 << (5 * step + 1))) == 0)
break;
retval = step;
*buf = (unsigned char)(~0xff >> step);
--step;
do {
buf[step] = 0x80 | (val & 0x3f);
val >>= 6;
} while (--step > 0);
*buf |= val;
}
return retval;
}
/* Find next weight and rule index. Inlined since called for every char. */
static __always_inline size_t find_idx(const USTRING_TYPE** us,
int32_t* weight_idx,
unsigned char* rule_idx,
const locale_data_t* l_data,
const int pass) {
int32_t tmp = findidx(l_data->table, l_data->indirect, l_data->extra, us, -1);
*rule_idx = tmp >> 24;
int32_t idx = tmp & 0xffffff;
size_t len = l_data->weights[idx++];
/* Skip over indices of previous levels. */
for (int i = 0; i < pass; i++) {
idx += len;
len = l_data->weights[idx++];
}
*weight_idx = idx;
return len;
}
static int find_position(const USTRING_TYPE* us,
const locale_data_t* l_data,
const int pass) {
int32_t weight_idx;
unsigned char rule_idx;
const USTRING_TYPE* usrc = us;
find_idx(&usrc, &weight_idx, &rule_idx, l_data, pass);
return l_data->rulesets[rule_idx * l_data->nrules + pass] & sort_position;
}
/* Do the transformation. */
static size_t do_xfrm(const USTRING_TYPE* usrc,
STRING_TYPE* dest,
size_t n,
const locale_data_t* l_data) {
int32_t weight_idx;
unsigned char rule_idx;
uint_fast32_t pass;
size_t needed = 0;
size_t last_needed;
/* Now the passes over the weights. */
for (pass = 0; pass < l_data->nrules; ++pass) {
size_t backw_len = 0;
last_needed = needed;
const USTRING_TYPE* cur = usrc;
const USTRING_TYPE* backw_start = NULL;
/* We assume that if a rule has defined `position' in one section
this is true for all of them. */
int position = find_position(cur, l_data, pass);
if (position == 0) {
while (*cur != L('\0')) {
const USTRING_TYPE* pos = cur;
size_t len = find_idx(&cur, &weight_idx, &rule_idx, l_data, pass);
int rule = l_data->rulesets[rule_idx * l_data->nrules + pass];
if ((rule & sort_forward) != 0) {
/* Handle the pushed backward sequence. */
if (backw_start != NULL) {
for (size_t i = backw_len; i > 0;) {
int32_t weight_idx;
unsigned char rule_idx;
size_t len =
find_idx(&backw_start, &weight_idx, &rule_idx, l_data, pass);
if (needed + i < n)
for (size_t j = len; j > 0; j--)
dest[needed + i - j] = l_data->weights[weight_idx++];
i -= len;
}
needed += backw_len;
backw_start = NULL;
backw_len = 0;
}
/* Now handle the forward element. */
if (needed + len < n)
while (len-- > 0)
dest[needed++] = l_data->weights[weight_idx++];
else
/* No more characters fit into the buffer. */
needed += len;
} else {
/* Remember start of the backward sequence & track length. */
if (backw_start == NULL)
backw_start = pos;
backw_len += len;
}
}
/* Handle the pushed backward sequence. */
if (backw_start != NULL) {
for (size_t i = backw_len; i > 0;) {
size_t len =
find_idx(&backw_start, &weight_idx, &rule_idx, l_data, pass);
if (needed + i < n)
for (size_t j = len; j > 0; j--)
dest[needed + i - j] = l_data->weights[weight_idx++];
i -= len;
}
needed += backw_len;
}
} else {
int val = 1;
char buf[7];
size_t buflen;
size_t i;
while (*cur != L('\0')) {
const USTRING_TYPE* pos = cur;
size_t len = find_idx(&cur, &weight_idx, &rule_idx, l_data, pass);
int rule = l_data->rulesets[rule_idx * l_data->nrules + pass];
if ((rule & sort_forward) != 0) {
/* Handle the pushed backward sequence. */
if (backw_start != NULL) {
for (size_t p = backw_len; p > 0; p--) {
size_t len;
int32_t weight_idx;
unsigned char rule_idx;
const USTRING_TYPE* backw_cur = backw_start;
/* To prevent a warning init the used vars. */
len = find_idx(&backw_cur, &weight_idx, &rule_idx, l_data, pass);
for (i = 1; i < p; i++)
len =
find_idx(&backw_cur, &weight_idx, &rule_idx, l_data, pass);
if (len != 0) {
buflen = utf8_encode(buf, val);
if (needed + buflen + len < n) {
for (i = 0; i < buflen; ++i)
dest[needed + i] = buf[i];
for (i = 0; i < len; ++i)
dest[needed + buflen + i] = l_data->weights[weight_idx + i];
}
needed += buflen + len;
val = 1;
} else
++val;
}
backw_start = NULL;
backw_len = 0;
}
/* Now handle the forward element. */
if (len != 0) {
buflen = utf8_encode(buf, val);
if (needed + buflen + len < n) {
for (i = 0; i < buflen; ++i)
dest[needed + i] = buf[i];
for (i = 0; i < len; ++i)
dest[needed + buflen + i] = l_data->weights[weight_idx + i];
}
needed += buflen + len;
val = 1;
} else
++val;
} else {
/* Remember start of the backward sequence & track length. */
if (backw_start == NULL)
backw_start = pos;
backw_len++;
}
}
/* Handle the pushed backward sequence. */
if (backw_start != NULL) {
for (size_t p = backw_len; p > 0; p--) {
size_t len;
int32_t weight_idx;
unsigned char rule_idx;
const USTRING_TYPE* backw_cur = backw_start;
/* To prevent a warning init the used vars. */
len = find_idx(&backw_cur, &weight_idx, &rule_idx, l_data, pass);
for (i = 1; i < p; i++)
len = find_idx(&backw_cur, &weight_idx, &rule_idx, l_data, pass);
if (len != 0) {
buflen = utf8_encode(buf, val);
if (needed + buflen + len < n) {
for (i = 0; i < buflen; ++i)
dest[needed + i] = buf[i];
for (i = 0; i < len; ++i)
dest[needed + buflen + i] = l_data->weights[weight_idx + i];
}
needed += buflen + len;
val = 1;
} else
++val;
}
}
}
/* Finally store the byte to separate the passes or terminate
the string. */
if (needed < n)
dest[needed] = pass + 1 < l_data->nrules ? L('\1') : L('\0');
++needed;
}
/* This is a little optimization: many collation specifications have
a `position' rule at the end and if no non-ignored character
is found the last \1 byte is immediately followed by a \0 byte
signalling this. We can avoid the \1 byte(s). */
if (needed > 2 && needed == last_needed + 1) {
/* Remove the \1 byte. */
if (--needed <= n)
dest[needed - 1] = L('\0');
}
/* Return the number of bytes/words we need, but don't count the NUL
byte/word at the end. */
return needed - 1;
}
/* Do the transformation using weight-index and rule cache. */
static size_t do_xfrm_cached(STRING_TYPE* dest,
size_t n,
const locale_data_t* l_data,
size_t idxmax,
int32_t* idxarr,
const unsigned char* rulearr) {
uint_fast32_t nrules = l_data->nrules;
unsigned char* rulesets = l_data->rulesets;
USTRING_TYPE* weights = l_data->weights;
uint_fast32_t pass;
size_t needed = 0;
size_t last_needed;
size_t idxcnt;
/* Now the passes over the weights. */
for (pass = 0; pass < nrules; ++pass) {
size_t backw_stop = ~0ul;
int rule = rulesets[rulearr[0] * nrules + pass];
/* We assume that if a rule has defined `position' in one section
this is true for all of them. */
int position = rule & sort_position;
last_needed = needed;
if (position == 0) {
for (idxcnt = 0; idxcnt < idxmax; ++idxcnt) {
if ((rule & sort_forward) != 0) {
size_t len;
if (backw_stop != ~0ul) {
/* Handle the pushed elements now. */
size_t backw;
for (backw = idxcnt; backw > backw_stop;) {
--backw;
len = weights[idxarr[backw]++];
if (needed + len < n)
while (len-- > 0)
dest[needed++] = weights[idxarr[backw]++];
else {
/* No more characters fit into the buffer. */
needed += len;
idxarr[backw] += len;
}
}
backw_stop = ~0ul;
}
/* Now handle the forward element. */
len = weights[idxarr[idxcnt]++];
if (needed + len < n)
while (len-- > 0)
dest[needed++] = weights[idxarr[idxcnt]++];
else {
/* No more characters fit into the buffer. */
needed += len;
idxarr[idxcnt] += len;
}
} else {
/* Remember where the backwards series started. */
if (backw_stop == ~0ul)
backw_stop = idxcnt;
}
rule = rulesets[rulearr[idxcnt + 1] * nrules + pass];
}
if (backw_stop != ~0ul) {
/* Handle the pushed elements now. */
size_t backw;
backw = idxcnt;
while (backw > backw_stop) {
size_t len = weights[idxarr[--backw]++];
if (needed + len < n)
while (len-- > 0)
dest[needed++] = weights[idxarr[backw]++];
else {
/* No more characters fit into the buffer. */
needed += len;
idxarr[backw] += len;
}
}
}
} else {
int val = 1;
char buf[7];
size_t buflen;
size_t i;
for (idxcnt = 0; idxcnt < idxmax; ++idxcnt) {
if ((rule & sort_forward) != 0) {
size_t len;
if (backw_stop != ~0ul) {
/* Handle the pushed elements now. */
size_t backw;
for (backw = idxcnt; backw > backw_stop;) {
--backw;
len = weights[idxarr[backw]++];
if (len != 0) {
buflen = utf8_encode(buf, val);
if (needed + buflen + len < n) {
for (i = 0; i < buflen; ++i)
dest[needed + i] = buf[i];
for (i = 0; i < len; ++i)
dest[needed + buflen + i] = weights[idxarr[backw] + i];
}
needed += buflen + len;
idxarr[backw] += len;
val = 1;
} else
++val;
}
backw_stop = ~0ul;
}
/* Now handle the forward element. */
len = weights[idxarr[idxcnt]++];
if (len != 0) {
buflen = utf8_encode(buf, val);
if (needed + buflen + len < n) {
for (i = 0; i < buflen; ++i)
dest[needed + i] = buf[i];
for (i = 0; i < len; ++i)
dest[needed + buflen + i] = weights[idxarr[idxcnt] + i];
}
needed += buflen + len;
idxarr[idxcnt] += len;
val = 1;
} else
/* Note that we don't have to increment `idxarr[idxcnt]'
since the length is zero. */
++val;
} else {
/* Remember where the backwards series started. */
if (backw_stop == ~0ul)
backw_stop = idxcnt;
}
rule = rulesets[rulearr[idxcnt + 1] * nrules + pass];
}
if (backw_stop != ~0ul) {
/* Handle the pushed elements now. */
size_t backw;
backw = idxmax - 1;
while (backw > backw_stop) {
size_t len = weights[idxarr[--backw]++];
if (len != 0) {
buflen = utf8_encode(buf, val);
if (needed + buflen + len < n) {
for (i = 0; i < buflen; ++i)
dest[needed + i] = buf[i];
for (i = 0; i < len; ++i)
dest[needed + buflen + i] = weights[idxarr[backw] + i];
}
needed += buflen + len;
idxarr[backw] += len;
val = 1;
} else
++val;
}
}
}
/* Finally store the byte to separate the passes or terminate
the string. */
if (needed < n)
dest[needed] = pass + 1 < nrules ? L('\1') : L('\0');
++needed;
}
/* This is a little optimization: many collation specifications have
a `position' rule at the end and if no non-ignored character
is found the last \1 byte is immediately followed by a \0 byte
signalling this. We can avoid the \1 byte(s). */
if (needed > 2 && needed == last_needed + 1) {
/* Remove the \1 byte. */
if (--needed <= n)
dest[needed - 1] = L('\0');
}
/* Return the number of bytes/words we need, but don't count the NUL
byte/word at the end. */
return needed - 1;
}
size_t glib_strxfrm(char* dest,
const char* src,
size_t n,
locale_data_t* locale) {
/* Handle byte comparison case. */
if (locale->nrules == 0) {
size_t srclen = strlen(src);
if (n != 0) {
memcpy(dest, src, MIN(srclen + 1, n));
}
return srclen;
}
/* Handle an empty string, code hereafter relies on strlen (src) > 0. */
if (*src == L('\0')) {
if (n != 0)
*dest = L('\0');
return 0;
}
/* We need the elements of the string as unsigned values since they
are used as indeces. */
const USTRING_TYPE* usrc = (const USTRING_TYPE*)src;
/* Allocate cache for small strings on the stack and fill it with weight and
rule indices. If the cache size is not sufficient, continue with the
uncached xfrm version. */
size_t idxmax = 0;
const USTRING_TYPE* cur = usrc;
int32_t* idxarr = alloca(SMALL_STR_SIZE * sizeof(int32_t));
unsigned char* rulearr = alloca(SMALL_STR_SIZE + 1);
do {
int32_t tmp =
findidx(locale->table, locale->indirect, locale->extra, &cur, -1);
rulearr[idxmax] = tmp >> 24;
idxarr[idxmax] = tmp & 0xffffff;
++idxmax;
} while (*cur != L('\0') && idxmax < SMALL_STR_SIZE);
/* This element is only read, the value never used but to determine
another value which then is ignored. */
rulearr[idxmax] = '\0';
/* Do the transformation. */
if (*cur == L('\0'))
return do_xfrm_cached(dest, n, locale, idxmax, idxarr, rulearr);
else
return do_xfrm(usrc, dest, n, locale);
}