Fork of Tangara with customizations
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
tangara-fw/src/tangara/audio/processor.cpp

400 lines
12 KiB

/*
* Copyright 2024 jacqueline <me@jacqueline.id.au>
*
* SPDX-License-Identifier: GPL-3.0-only
*/
#include "audio/processor.hpp"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <limits>
#include <span>
#include "assert.h"
#include "esp_heap_caps.h"
#include "esp_log.h"
#include "esp_timer.h"
#include "freertos/portmacro.h"
#include "freertos/projdefs.h"
#include "audio/audio_events.hpp"
#include "audio/audio_sink.hpp"
#include "audio/i2s_audio_output.hpp"
#include "audio/resample.hpp"
#include "drivers/i2s_dac.hpp"
#include "drivers/pcm_buffer.hpp"
#include "events/event_queue.hpp"
#include "sample.hpp"
#include "tasks.hpp"
[[maybe_unused]] static constexpr char kTag[] = "mixer";
static const size_t kSampleBufferLength = drivers::kI2SBufferLengthFrames * 2;
static const size_t kSourceBufferLength = kSampleBufferLength * 2;
namespace audio {
/*
* The output format to convert all sources to. This is currently fixed because
* the Bluetooth output doesn't support runtime configuration of its input
* format.
*/
static const I2SAudioOutput::Format kTargetFormat{
.sample_rate = 48000,
.num_channels = 2,
.bits_per_sample = 16,
};
SampleProcessor::SampleProcessor(drivers::PcmBuffer& sink)
: commands_(xQueueCreate(2, sizeof(Args))),
source_(xStreamBufferCreateWithCaps(kSourceBufferLength + 1,
sizeof(sample::Sample),
MALLOC_CAP_DMA)),
sink_(sink),
unprocessed_samples_(0) {
tasks::StartPersistent<tasks::Type::kAudioConverter>([&]() { Main(); });
}
SampleProcessor::~SampleProcessor() {
vQueueDelete(commands_);
vStreamBufferDeleteWithCaps(source_);
}
auto SampleProcessor::SetOutput(std::shared_ptr<IAudioOutput> output) -> void {
// Make sure our fixed output format is valid.
assert(output->PrepareFormat(kTargetFormat) == kTargetFormat);
output->Configure(kTargetFormat);
// FIXME: We should add synchronisation here, but we should be careful
// about not impacting performance given that the output will change only
// very rarely (if ever).
output_ = output;
}
auto SampleProcessor::beginStream(std::shared_ptr<TrackInfo> track) -> void {
Args args{
.track = new std::shared_ptr<TrackInfo>(track),
.samples_available = 0,
.is_end_of_stream = false,
.clear_buffers = false,
};
xQueueSend(commands_, &args, portMAX_DELAY);
}
auto SampleProcessor::continueStream(std::span<sample::Sample> input)
-> std::span<sample::Sample> {
size_t bytes_sent = xStreamBufferSend(source_, input.data(),
input.size_bytes(), pdMS_TO_TICKS(100));
if (!bytes_sent) {
// If nothing could be sent, then bail out early. We don't want to send a
// samples_available command with zero samples.
return input;
}
// We should only ever be placing whole samples into the buffer. If half
// samples start being sent, then this indicates a serious bug somewhere.
size_t samples_sent = bytes_sent / sizeof(sample::Sample);
assert(samples_sent * sizeof(sample::Sample) == bytes_sent);
Args args{
.track = nullptr,
.samples_available = samples_sent,
.is_end_of_stream = false,
.clear_buffers = false,
};
xQueueSend(commands_, &args, portMAX_DELAY);
return input.subspan(samples_sent);
}
auto SampleProcessor::endStream(bool cancelled) -> void {
Args args{
.track = nullptr,
.samples_available = 0,
.is_end_of_stream = true,
.clear_buffers = cancelled,
};
xQueueSend(commands_, &args, portMAX_DELAY);
}
IRAM_ATTR
auto SampleProcessor::Main() -> void {
for (;;) {
// Block indefinitely if the processor is idle. Otherwise check briefly for
// new commands, then continue processing.
TickType_t wait = hasPendingWork() ? 0 : portMAX_DELAY;
Args args;
if (xQueueReceive(commands_, &args, wait)) {
if (args.is_end_of_stream && args.clear_buffers) {
// The new command is telling us to clear our buffers! This includes
// discarding any commands that have backed up without being processed.
// Discard all the old commands, then immediately handle the end of
// stream.
while (!pending_commands_.empty()) {
Args discard = pending_commands_.front();
pending_commands_.pop_front();
discardCommand(discard);
}
handleEndStream(true);
} else {
pending_commands_.push_back(args);
}
}
// We need to finish flushing all processed samples before we can process
// more samples.
if (!output_buffer_.isEmpty() && flushOutputBuffer()) {
continue;
}
// We need to finish processing all the samples we've been told about
// before we handle backed up commands.
if (unprocessed_samples_ && !processSamples(false)) {
continue;
}
while (!pending_commands_.empty()) {
args = pending_commands_.front();
pending_commands_.pop_front();
if (args.track) {
handleBeginStream(*args.track);
delete args.track;
}
if (args.samples_available) {
unprocessed_samples_ += args.samples_available;
}
if (args.is_end_of_stream) {
if (processSamples(true) || args.clear_buffers) {
handleEndStream(args.clear_buffers);
} else {
// The output filled up while we were trying to flush the last
// samples of this stream, and we haven't been told to clear our
// buffers. Retry handling this command later.
pending_commands_.push_front(args);
break;
}
}
}
}
}
auto SampleProcessor::handleBeginStream(std::shared_ptr<TrackInfo> track)
-> void {
// If the new stream's sample rate doesn't match our canonical sample rate,
// then prepare to start resampling.
if (track->format.sample_rate != kTargetFormat.sample_rate) {
ESP_LOGI(kTag, "resampling %lu -> %lu", track->format.sample_rate,
kTargetFormat.sample_rate);
if (!resampler_ || resampler_->sourceRate() != track->format.sample_rate) {
// If there's already a resampler instance for this source rate, then
// reuse it to help gapless playback work smoothly.
resampler_.reset(new Resampler(track->format.sample_rate,
kTargetFormat.sample_rate,
track->format.num_channels));
}
} else {
resampler_.reset();
}
// If the new stream has only one channel, then we double it to get stereo
// audio.
// FIXME: If the Bluetooth stack allowed us to configure the number of
// channels, we could remove this.
double_samples_ = track->format.num_channels != kTargetFormat.num_channels;
events::Audio().Dispatch(internal::StreamStarted{
.track = track,
.sink_format = kTargetFormat,
.cue_at_sample = sink_.totalSent(),
});
}
IRAM_ATTR
auto SampleProcessor::processSamples(bool finalise) -> bool {
for (;;) {
bool out_of_work = true;
// First, fill up our input buffer with samples.
if (unprocessed_samples_ > 0) {
out_of_work = false;
auto input = input_buffer_.writeAcquire();
size_t bytes_received = xStreamBufferReceive(
source_, input.data(),
std::min(input.size_bytes(),
unprocessed_samples_ * sizeof(sample::Sample)),
0);
// We should never receive a half sample. Blow up immediately if we do.
size_t samples_received = bytes_received / sizeof(sample::Sample);
assert(samples_received * sizeof(sample::Sample) == bytes_received);
unprocessed_samples_ -= samples_received;
input_buffer_.writeCommit(samples_received);
}
// Next, push input samples through the resampler. In the best case, this
// is a simple copy operation.
if (!input_buffer_.isEmpty()) {
out_of_work = false;
auto resample_input = input_buffer_.readAcquire();
auto resample_output = resampled_buffer_.writeAcquire();
size_t read, wrote;
if (resampler_) {
std::tie(read, wrote) =
resampler_->Process(resample_input, resample_output, finalise);
} else {
read = wrote = std::min(resample_input.size(), resample_output.size());
std::copy_n(resample_input.begin(), read, resample_output.begin());
}
input_buffer_.readCommit(read);
resampled_buffer_.writeCommit(wrote);
}
// Next, we need to make sure the output is in stereo. This is also a simple
// copy in the best case.
if (!resampled_buffer_.isEmpty()) {
out_of_work = false;
auto channels_input = resampled_buffer_.readAcquire();
auto channels_output = output_buffer_.writeAcquire();
size_t read, wrote;
if (double_samples_) {
wrote = channels_output.size();
read = wrote / 2;
if (read > channels_input.size()) {
read = channels_input.size();
wrote = read * 2;
}
for (size_t i = 0; i < read; i++) {
channels_output[i * 2] = channels_input[i];
channels_output[(i * 2) + 1] = channels_input[i];
}
} else {
read = wrote = std::min(channels_input.size(), channels_output.size());
std::copy_n(channels_input.begin(), read, channels_output.begin());
}
resampled_buffer_.readCommit(read);
output_buffer_.writeCommit(wrote);
}
// Finally, flush whatever ended up in the output buffer.
if (flushOutputBuffer()) {
if (out_of_work) {
return true;
}
} else {
// The output is congested. Back off of processing for a moment.
return false;
}
}
}
auto SampleProcessor::handleEndStream(bool clear_bufs) -> void {
if (clear_bufs) {
sink_.clear();
input_buffer_.clear();
resampled_buffer_.clear();
output_buffer_.clear();
size_t bytes_discarded = 0;
size_t bytes_to_discard = unprocessed_samples_ * sizeof(sample::Sample);
auto scratch_buf = output_buffer_.writeAcquire();
while (bytes_discarded < bytes_to_discard) {
size_t bytes_read =
xStreamBufferReceive(source_, scratch_buf.data(),
std::min(scratch_buf.size_bytes(),
bytes_to_discard - bytes_discarded),
0);
bytes_discarded += bytes_read;
}
unprocessed_samples_ = 0;
}
events::Audio().Dispatch(internal::StreamEnded{
.cue_at_sample = sink_.totalSent(),
});
}
auto SampleProcessor::hasPendingWork() -> bool {
return !pending_commands_.empty() || unprocessed_samples_ > 0 ||
!input_buffer_.isEmpty() || !resampled_buffer_.isEmpty() ||
!output_buffer_.isEmpty();
}
IRAM_ATTR
auto SampleProcessor::flushOutputBuffer() -> bool {
auto samples = output_buffer_.readAcquire();
size_t sent = sink_.send(samples);
output_buffer_.readCommit(sent);
return output_buffer_.isEmpty();
}
auto SampleProcessor::discardCommand(Args& command) -> void {
if (command.track) {
delete command.track;
}
if (command.samples_available) {
unprocessed_samples_ += command.samples_available;
}
// End of stream commands can just be dropped without further action.
}
SampleProcessor::Buffer::Buffer()
: buffer_(reinterpret_cast<sample::Sample*>(
heap_caps_calloc(kSampleBufferLength,
sizeof(sample::Sample),
MALLOC_CAP_DMA)),
kSampleBufferLength),
samples_in_buffer_() {}
SampleProcessor::Buffer::~Buffer() {
heap_caps_free(buffer_.data());
}
auto SampleProcessor::Buffer::writeAcquire() -> std::span<sample::Sample> {
return buffer_.subspan(samples_in_buffer_.size());
}
auto SampleProcessor::Buffer::writeCommit(size_t samples) -> void {
if (samples == 0) {
return;
}
samples_in_buffer_ = buffer_.first(samples + samples_in_buffer_.size());
}
auto SampleProcessor::Buffer::readAcquire() -> std::span<sample::Sample> {
return samples_in_buffer_;
}
auto SampleProcessor::Buffer::readCommit(size_t samples) -> void {
if (samples == 0) {
return;
}
samples_in_buffer_ = samples_in_buffer_.subspan(samples);
// Move the leftover samples to the front of the buffer, so that we're setup
// for a new write.
if (!samples_in_buffer_.empty()) {
std::memmove(buffer_.data(), samples_in_buffer_.data(),
samples_in_buffer_.size_bytes());
samples_in_buffer_ = buffer_.first(samples_in_buffer_.size());
}
}
auto SampleProcessor::Buffer::isEmpty() -> bool {
return samples_in_buffer_.empty();
}
auto SampleProcessor::Buffer::clear() -> void {
samples_in_buffer_ = {};
}
} // namespace audio