Fork of Tangara with customizations
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
tangara-fw/src/drivers/dac.cpp

186 lines
5.6 KiB

#include "dac.hpp"
#include <cstdint>
#include "assert.h"
#include "driver/i2c.h"
#include "driver/i2s_common.h"
#include "driver/i2s_std.h"
#include "driver/i2s_types.h"
#include "esp_err.h"
#include "esp_log.h"
#include "hal/i2c_types.h"
#include "gpio_expander.hpp"
#include "hal/i2s_types.h"
#include "i2c.hpp"
namespace drivers {
static const char* kTag = "AUDIODAC";
static const uint8_t kPcm5122Address = 0x4C;
static const uint8_t kPcm5122Timeout = pdMS_TO_TICKS(100);
static const i2s_port_t kI2SPort = I2S_NUM_0;
static const AudioDac::SampleRate kDefaultSampleRate =
AudioDac::SAMPLE_RATE_44_1;
static const AudioDac::BitsPerSample kDefaultBps = AudioDac::BPS_16;
auto AudioDac::create(GpioExpander* expander)
-> cpp::result<std::unique_ptr<AudioDac>, Error> {
// TODO: tune.
i2s_chan_handle_t i2s_handle;
i2s_chan_config_t channel_config =
I2S_CHANNEL_DEFAULT_CONFIG(I2S_NUM_AUTO, I2S_ROLE_MASTER);
i2s_new_channel(&channel_config, &i2s_handle, NULL);
//
// First, instantiate the instance so it can do all of its power on
// configuration.
std::unique_ptr<AudioDac> dac =
std::make_unique<AudioDac>(expander, i2s_handle);
// Whilst we wait for the initial boot, we can work on installing the I2S
// driver.
i2s_std_config_t i2s_config = {
.clk_cfg = dac->clock_config_,
.slot_cfg = dac->slot_config_,
.gpio_cfg = {.mclk = GPIO_NUM_0,
.bclk = GPIO_NUM_26,
.ws = GPIO_NUM_27,
.dout = GPIO_NUM_5,
.din = I2S_GPIO_UNUSED,
.invert_flags =
{
.mclk_inv = false,
.bclk_inv = false,
.ws_inv = false,
}},
};
if (esp_err_t err =
i2s_channel_init_std_mode(i2s_handle, &i2s_config) != ESP_OK) {
ESP_LOGE(kTag, "failed to initialise i2s channel %x", err);
return cpp::fail(Error::FAILED_TO_INSTALL_I2S);
}
// TODO: does starting the channel mean the dac will boot into a more
// meaningful state?
i2s_channel_enable(dac->i2s_handle_);
// Now let's double check that the DAC itself came up whilst we we working.
bool is_booted = dac->WaitForPowerState(
[](bool booted, PowerState state) { return booted; });
if (!is_booted) {
ESP_LOGE(kTag, "Timed out waiting for boot");
return cpp::fail(Error::FAILED_TO_BOOT);
}
// Write the initial configuration.
dac->WriteRegister(Register::DE_EMPHASIS, 1 << 4);
dac->WriteVolume(255);
bool is_configured =
dac->WaitForPowerState([](bool booted, PowerState state) {
return state == WAIT_FOR_CP || state == RAMP_UP || state == RUN ||
state == STANDBY;
});
if (!is_configured) {
return cpp::fail(Error::FAILED_TO_CONFIGURE);
}
return dac;
}
AudioDac::AudioDac(GpioExpander* gpio, i2s_chan_handle_t i2s_handle)
: gpio_(gpio),
i2s_handle_(i2s_handle),
clock_config_(I2S_STD_CLK_DEFAULT_CONFIG(48000)),
slot_config_(I2S_STD_MSB_SLOT_DEFAULT_CONFIG(I2S_DATA_BIT_WIDTH_32BIT,
I2S_SLOT_MODE_STEREO)) {
gpio_->set_pin(GpioExpander::AUDIO_POWER_ENABLE, true);
gpio_->Write();
}
AudioDac::~AudioDac() {
i2s_channel_disable(i2s_handle_);
i2s_del_channel(i2s_handle_);
gpio_->set_pin(GpioExpander::AUDIO_POWER_ENABLE, false);
gpio_->Write();
}
void AudioDac::WriteVolume(uint8_t volume) {
WriteRegister(Register::DIGITAL_VOLUME_L, volume);
WriteRegister(Register::DIGITAL_VOLUME_R, volume);
}
std::pair<bool, AudioDac::PowerState> AudioDac::ReadPowerState() {
uint8_t result = 0;
I2CTransaction transaction;
transaction.start()
.write_addr(kPcm5122Address, I2C_MASTER_WRITE)
.write_ack(DSP_BOOT_POWER_STATE)
.start()
.write_addr(kPcm5122Address, I2C_MASTER_READ)
.read(&result, I2C_MASTER_NACK)
.stop();
ESP_ERROR_CHECK(transaction.Execute());
bool is_booted = result >> 7;
PowerState detail = (PowerState)(result & 0b1111);
return std::pair(is_booted, detail);
}
bool AudioDac::WaitForPowerState(
std::function<bool(bool, AudioDac::PowerState)> predicate) {
bool has_matched = false;
for (int i = 0; i < 10; i++) {
std::pair<bool, PowerState> result = ReadPowerState();
has_matched = predicate(result.first, result.second);
if (has_matched) {
break;
} else {
ESP_LOGI(kTag, "Waiting for power state (was %d 0x%x)", result.first,
(uint8_t)result.second);
vTaskDelay(pdMS_TO_TICKS(1));
}
}
return has_matched;
}
auto AudioDac::Reconfigure(BitsPerSample bps, SampleRate rate) -> bool {
// TODO(jacqueline): investigate how reliable the auto-clocking of the dac
// is. We might need to explicit reconfigure the dac here as well if it's not
// good enough.
i2s_channel_disable(i2s_handle_);
slot_config_.slot_bit_width = (i2s_slot_bit_width_t)bps;
i2s_channel_reconfig_std_slot(i2s_handle_, &slot_config_);
// TODO: update mclk multiple as well if needed?
clock_config_.sample_rate_hz = rate;
i2s_channel_reconfig_std_clock(i2s_handle_, &clock_config_);
i2s_channel_enable(i2s_handle_);
return true;
}
auto AudioDac::WriteData(const cpp::span<std::byte>& data, TickType_t max_wait)
-> std::size_t {
std::size_t res = 0;
i2s_channel_write(i2s_handle_, data.data(), data.size(), &res, max_wait);
return res;
}
void AudioDac::WriteRegister(Register reg, uint8_t val) {
I2CTransaction transaction;
transaction.start()
.write_addr(kPcm5122Address, I2C_MASTER_WRITE)
.write_ack(reg, val)
.stop();
// TODO: Retry once?
ESP_ERROR_CHECK(transaction.Execute());
}
} // namespace drivers