/* This code is public-domain - it is based on libcrypt * placed in the public domain by Wei Dai and other contributors. */ // gcc -Wall -DSHA1TEST -o sha1test sha1.c && ./sha1test #include #include #include "sha1.h" //according to http://ip.cadence.com/uploads/pdf/xtensalx_overview_handbook.pdf // the cpu is normally defined as little ending, but can be big endian too. // for the esp this seems to work #if defined(__BYTE_ORDER__)&&(__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) #define SHA_BIG_ENDIAN #endif /* code */ #define SHA1_K0 0x5a827999 #define SHA1_K20 0x6ed9eba1 #define SHA1_K40 0x8f1bbcdc #define SHA1_K60 0xca62c1d6 void httpd_sha1_init(httpd_sha1nfo *s) { s->state[0] = 0x67452301; s->state[1] = 0xefcdab89; s->state[2] = 0x98badcfe; s->state[3] = 0x10325476; s->state[4] = 0xc3d2e1f0; s->byteCount = 0; s->bufferOffset = 0; } static uint32_t sha1_rol32(uint32_t number, uint8_t bits) { return ((number << bits) | (number >> (32 - bits))); } static void sha1_hashBlock(httpd_sha1nfo *s) { uint8_t i; uint32_t a, b, c, d, e, t; a = s->state[0]; b = s->state[1]; c = s->state[2]; d = s->state[3]; e = s->state[4]; for (i = 0; i < 80; i++) { if (i >= 16) { t = s->buffer[(i + 13) & 15] ^ s->buffer[(i + 8) & 15] ^ s->buffer[(i + 2) & 15] ^ s->buffer[i & 15]; s->buffer[i & 15] = sha1_rol32(t, 1); } if (i < 20) { t = (d ^ (b & (c ^ d))) + SHA1_K0; } else if (i < 40) { t = (b ^ c ^ d) + SHA1_K20; } else if (i < 60) { t = ((b & c) | (d & (b | c))) + SHA1_K40; } else { t = (b ^ c ^ d) + SHA1_K60; } t += sha1_rol32(a, 5) + e + s->buffer[i & 15]; e = d; d = c; c = sha1_rol32(b, 30); b = a; a = t; } s->state[0] += a; s->state[1] += b; s->state[2] += c; s->state[3] += d; s->state[4] += e; } static void sha1_addUncounted(httpd_sha1nfo *s, uint8_t data) { uint8_t *const b = (uint8_t *) s->buffer; #ifdef SHA_BIG_ENDIAN b[s->bufferOffset] = data; #else b[s->bufferOffset ^ 3] = data; #endif s->bufferOffset++; if (s->bufferOffset == BLOCK_LENGTH) { sha1_hashBlock(s); s->bufferOffset = 0; } } void httpd_sha1_writebyte(httpd_sha1nfo *s, uint8_t data) { ++s->byteCount; sha1_addUncounted(s, data); } void httpd_sha1_write(httpd_sha1nfo *s, const char *data, size_t len) { for (; len--;) { httpd_sha1_writebyte(s, (uint8_t) *data++); } } static void sha1_pad(httpd_sha1nfo *s) { // Implement SHA-1 padding (fips180-2 ยง5.1.1) // Pad with 0x80 followed by 0x00 until the end of the block sha1_addUncounted(s, 0x80); while (s->bufferOffset != 56) { sha1_addUncounted(s, 0x00); } // Append length in the last 8 bytes sha1_addUncounted(s, 0); // We're only using 32 bit lengths sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths sha1_addUncounted(s, 0); // So zero pad the top bits sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8 sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as sha1_addUncounted(s, s->byteCount >> 13); // byte. sha1_addUncounted(s, s->byteCount >> 5); sha1_addUncounted(s, s->byteCount << 3); } uint8_t *httpd_sha1_result(httpd_sha1nfo *s) { // Pad to complete the last block sha1_pad(s); #ifndef SHA_BIG_ENDIAN // Swap byte order back int i; for (i = 0; i < 5; i++) { s->state[i] = (((s->state[i]) << 24) & 0xff000000) | (((s->state[i]) << 8) & 0x00ff0000) | (((s->state[i]) >> 8) & 0x0000ff00) | (((s->state[i]) >> 24) & 0x000000ff); } #endif // Return pointer to hash (20 characters) return (uint8_t *) s->state; } #define HMAC_IPAD 0x36 #define HMAC_OPAD 0x5c void httpd_sha1_initHmac(httpd_sha1nfo *s, const uint8_t *key, size_t keyLength) { uint8_t i; memset(s->keyBuffer, 0, BLOCK_LENGTH); if (keyLength > BLOCK_LENGTH) { // Hash long keys httpd_sha1_init(s); for (; keyLength--;) { httpd_sha1_writebyte(s, *key++); } memcpy(s->keyBuffer, httpd_sha1_result(s), HASH_LENGTH); } else { // Block length keys are used as is memcpy(s->keyBuffer, key, keyLength); } // Start inner hash httpd_sha1_init(s); for (i = 0; i < BLOCK_LENGTH; i++) { httpd_sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD); } } uint8_t *httpd_sha1_resultHmac(httpd_sha1nfo *s) { uint8_t i; // Complete inner hash memcpy(s->innerHash, httpd_sha1_result(s), HASH_LENGTH); // Calculate outer hash httpd_sha1_init(s); for (i = 0; i < BLOCK_LENGTH; i++) { httpd_sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD); } for (i = 0; i < HASH_LENGTH; i++) { httpd_sha1_writebyte(s, s->innerHash[i]); } return httpd_sha1_result(s); }