/* * rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver * Copyright (C) 2012 by Steve Markgraf * Copyright (C) 2012 by Hoernchen * Copyright (C) 2012 by Kyle Keen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* * written because people could not do real time * FM demod on Atom hardware with GNU radio * based on rtl_sdr.c and rtl_tcp.c * todo: realtime ARMv5 * remove float math (disqualifies complex.h) * replace atan2 with a fast approximation * in-place array operations * wide band support * sanity checks * nicer FIR than square * (tried this, was twice as slow and did not sound much better) * scale squelch to other input parameters */ #include #include #include #include #include #include #ifndef _WIN32 #include #else #include #include "getopt/getopt.h" #endif #include #include #include #include "rtl-sdr.h" #define DEFAULT_SAMPLE_RATE 24000 #define DEFAULT_ASYNC_BUF_NUMBER 32 #define DEFAULT_BUF_LENGTH (1 * 16384) #define MINIMAL_BUF_LENGTH 512 #define MAXIMAL_BUF_LENGTH (256 * 16384) #define CONSEQ_SQUELCH 4 static pthread_t demod_thread; static sem_t data_ready; static int do_exit = 0; static rtlsdr_dev_t *dev = NULL; struct fm_state { int now_r; int now_j; int pre_r; int pre_j; int prev_index; int downsample; /* min 1, max 256 */ int post_downsample; int output_scale; int squelch_level; int squelch_hits; uint8_t buf[DEFAULT_BUF_LENGTH]; uint32_t buf_len; int signal[DEFAULT_BUF_LENGTH]; /* 16 bit signed i/q pairs */ int16_t signal2[DEFAULT_BUF_LENGTH]; /* signal has lowpass, signal2 has demod */ int signal_len; FILE *file; int edge; uint32_t freqs[32]; int freq_len; int freq_now; uint32_t sample_rate; int fir_enable; int fir[256]; /* fir_len == downsample */ int fir_sum; int custom_atan; }; void usage(void) { fprintf(stderr, "rtl_fm, a simple narrow band FM demodulator for RTL2832 based DVB-T receivers\n\n" "Usage:\t -f frequency_to_tune_to [Hz]\n" "\t (use multiple -f for scanning)\n" "\t[-s samplerate (default: 24000 Hz)]\n" "\t[-d device_index (default: 0)]\n" "\t[-g tuner_gain (default: -1dB)]\n" "\t[-l squelch_level (default: 150)]\n" "\t[-E freq sets lower edge (default: center)]\n" "\tfilename (a '-' dumps samples to stdout)\n\n" "Experimental quality/cpu options:\n" "\t[-o oversampling (default: 1) !!BROKEN!!]\n" "\t[-F enables high quality FIR (default: off/square)]\n" "\t[-A enables high speed arctan (default: off)]\n\n" "Produces signed 16 bit ints, use Sox to hear them.\n" "\trtl_fm ... | play -t raw -r 24k -e signed-integer -b 16 -c 1 -V1 -\n\n"); exit(1); } #ifdef _WIN32 BOOL WINAPI sighandler(int signum) { if (CTRL_C_EVENT == signum) { fprintf(stderr, "Signal caught, exiting!\n"); do_exit = 1; rtlsdr_cancel_async(dev); return TRUE; } return FALSE; } #else static void sighandler(int signum) { fprintf(stderr, "Signal caught, exiting!\n"); do_exit = 1; rtlsdr_cancel_async(dev); } #endif void rotate_90(unsigned char *buf, uint32_t len) /* 90 rotation is 1+0j, 0+1j, -1+0j, 0-1j or [0, 1, -3, 2, -4, -5, 7, -6] */ { uint32_t i; unsigned char tmp; for (i=0; inow_r += ((int)buf[i] - 128); fm->now_j += ((int)buf[i+1] - 128); i += 2; fm->prev_index++; if (fm->prev_index < (fm->downsample)) { continue; } fm->signal[i2] = fm->now_r * fm->output_scale; fm->signal[i2+1] = fm->now_j * fm->output_scale; fm->prev_index = -1; fm->now_r = 0; fm->now_j = 0; i2 += 2; } fm->signal_len = i2; } void build_fir(struct fm_state *fm) /* for now, a simple triangle * fancy FIRs are equally expensive, so use one */ /* point = sum(sample[i] * fir[i] * fir_len / fir_sum) */ { int i, len; len = fm->downsample; for(i = 0; i < len; i++) { fm->fir[i] = i; } for(i = len-1; i <= 0; i--) { fm->fir[i] = len - i; } fm->fir_sum = 0; for(i = 0; i < len; i++) { fm->fir_sum += fm->fir[i]; } } void low_pass_fir(struct fm_state *fm, unsigned char *buf, uint32_t len) /* perform an arbitrary FIR, doubles CPU use */ // possibly bugged, or overflowing { int i=0, i2=0, i3=0; while (i < (int)len) { fm->prev_index++; i3 = fm->prev_index; fm->now_r += ((int)buf[i] - 128) * fm->fir[i3] * fm->downsample / fm->fir_sum; fm->now_j += ((int)buf[i+1] - 128) * fm->fir[i3] * fm->downsample / fm->fir_sum; i += 2; if (fm->prev_index < (fm->downsample)) { continue; } fm->signal[i2] = fm->now_r * fm->output_scale; fm->signal[i2+1] = fm->now_j * fm->output_scale; fm->prev_index = -1; fm->now_r = 0; fm->now_j = 0; i2 += 2; } fm->signal_len = i2; } int low_pass_simple(int16_t *signal2, int len, int step) // no wrap around, length must be multiple of step { int i, i2, sum; for(i=0; i < len; i+=step) { sum = 0; for(i2=0; i2 (3.14159) || angle < (-3.14159)) // {fprintf(stderr, "overflow %f\n", angle);} return (int)(angle / 3.14159 * (1<<14)); } int fast_atan2(int y, int x) /* pre scaled for int16 */ { int yabs, angle; int pi4=(1<<12), pi34=3*(1<<12); // note pi = 1<<14 if (x==0 && y==0) { return 0; } yabs = y; if (yabs < 0) { yabs = -yabs; } if (x >= 0) { angle = pi4 - pi4 * (x-yabs) / (x+yabs); } else { angle = pi34 - pi4 * (x+yabs) / (yabs-x); } if (y < 0) { return -angle; } return angle; } int polar_disc_fast(int ar, int aj, int br, int bj) { int cr, cj; multiply(ar, aj, br, -bj, &cr, &cj); return fast_atan2(cj, cr); } void fm_demod(struct fm_state *fm) { int i, pcm; pcm = polar_discriminant(fm->signal[0], fm->signal[1], fm->pre_r, fm->pre_j); fm->signal2[0] = (int16_t)pcm; for (i = 2; i < (fm->signal_len); i += 2) { if (fm->custom_atan) { pcm = polar_disc_fast(fm->signal[i], fm->signal[i+1], fm->signal[i-2], fm->signal[i-1]); } else { pcm = polar_discriminant(fm->signal[i], fm->signal[i+1], fm->signal[i-2], fm->signal[i-1]); } fm->signal2[i/2] = (int16_t)pcm; } fm->pre_r = fm->signal[fm->signal_len - 2]; fm->pre_j = fm->signal[fm->signal_len - 1]; } int mad(int *samples, int len, int step) /* mean average deviation */ { int i=0, sum=0, ave=0; for (i=0; isignal_len; sq_l = fm->squelch_level; dev_r = mad(&(fm->signal[0]), len, 2); dev_j = mad(&(fm->signal[1]), len, 2); if ((dev_r > sq_l) || (dev_j > sq_l)) { fm->squelch_hits = 0; return 1; } /* weak signal, kill it entirely */ for (i=0; isignal2[i/2] = 0; } fm->squelch_hits++; return 0; } static void optimal_settings(struct fm_state *fm, int freq, int hopping) { int r, capture_freq, capture_rate; fm->downsample = (1000000 / fm->sample_rate) + 1; fm->freq_now = freq; capture_rate = fm->downsample * fm->sample_rate; capture_freq = fm->freqs[freq] + capture_rate/4; capture_freq += fm->edge * fm->sample_rate / 2; fm->output_scale = (1<<15) / (128 * fm->downsample); if (fm->output_scale < 1) { fm->output_scale = 1;} fm->output_scale = 1; /* Set the frequency */ r = rtlsdr_set_center_freq(dev, (uint32_t)capture_freq); if (hopping) { return;} fprintf(stderr, "Oversampling input by: %ix.\n", fm->downsample); fprintf(stderr, "Oversampling output by: %ix.\n", fm->post_downsample); fprintf(stderr, "Buffer size: %0.2fms\n", 1000 * 0.5 * (float)DEFAULT_BUF_LENGTH / (float)capture_rate); if (r < 0) { fprintf(stderr, "WARNING: Failed to set center freq.\n");} else { fprintf(stderr, "Tuned to %u Hz.\n", capture_freq);} /* Set the sample rate */ fprintf(stderr, "Sampling at %u Hz.\n", capture_rate); r = rtlsdr_set_sample_rate(dev, (uint32_t)capture_rate); if (r < 0) { fprintf(stderr, "WARNING: Failed to set sample rate.\n");} } void full_demod(unsigned char *buf, uint32_t len, struct fm_state *fm) { int sr, freq_next; rotate_90(buf, len); if (fm->fir_enable) { low_pass_fir(fm, buf, len); } else { low_pass(fm, buf, len); } fm_demod(fm); sr = post_squelch(fm); if (fm->post_downsample > 1) { fm->signal_len = low_pass_simple(fm->signal2, fm->signal_len, fm->post_downsample);} /* ignore under runs for now */ fwrite(fm->signal2, 2, fm->signal_len/2, fm->file); if (fm->freq_len > 1 && !sr && fm->squelch_hits > CONSEQ_SQUELCH) { freq_next = (fm->freq_now + 1) % fm->freq_len; optimal_settings(fm, freq_next, 1); fm->squelch_hits = CONSEQ_SQUELCH + 1; /* hair trigger */ /* wait for settling and dump buffer */ usleep(5000); rtlsdr_read_sync(dev, NULL, 4096, NULL); } } static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx) { struct fm_state *fm2 = ctx; int dr_val; if (do_exit) { return;} if (!ctx) { return;} /* single threaded uses 25% less CPU? */ /* full_demod(buf, len, fm2); */ memcpy(fm2->buf, buf, len); fm2->buf_len = len; sem_getvalue(&data_ready, &dr_val); if (!dr_val) { sem_post(&data_ready);} } static void *demod_thread_fn(void *arg) { struct fm_state *fm2 = arg; while (!do_exit) { sem_wait(&data_ready); full_demod(fm2->buf, fm2->buf_len, fm2); } return 0; } int main(int argc, char **argv) { #ifndef _WIN32 struct sigaction sigact; #endif struct fm_state fm; char *filename = NULL; int n_read; int r, opt; int i, gain = -10; // tenths of a dB uint8_t *buffer; uint32_t dev_index = 0; int device_count; char vendor[256], product[256], serial[256]; fm.freqs[0] = 100000000; fm.sample_rate = DEFAULT_SAMPLE_RATE; fm.squelch_level = 150; fm.freq_len = 0; fm.edge = 0; fm.fir_enable = 0; fm.prev_index = -1; fm.post_downsample = 1; fm.custom_atan = 0; sem_init(&data_ready, 0, 0); while ((opt = getopt(argc, argv, "d:f:g:s:b:l:o:EFA")) != -1) { switch (opt) { case 'd': dev_index = atoi(optarg); break; case 'f': fm.freqs[fm.freq_len] = (uint32_t)atof(optarg); fm.freq_len++; break; case 'g': gain = (int)(atof(optarg) * 10); break; case 'l': fm.squelch_level = (int)atof(optarg); break; case 's': fm.sample_rate = (uint32_t)atof(optarg); break; case 'o': fm.post_downsample = (int)atof(optarg); break; case 'E': fm.edge = 1; break; case 'F': fm.fir_enable = 1; break; case 'A': fm.custom_atan = 1; break; default: usage(); break; } } /* double sample_rate to limit to Δθ to ±π */ fm.sample_rate *= fm.post_downsample; if (argc <= optind) { usage(); } else { filename = argv[optind]; } buffer = malloc(DEFAULT_BUF_LENGTH * sizeof(uint8_t)); device_count = rtlsdr_get_device_count(); if (!device_count) { fprintf(stderr, "No supported devices found.\n"); exit(1); } fprintf(stderr, "Found %d device(s):\n", device_count); for (i = 0; i < device_count; i++) { rtlsdr_get_device_usb_strings(i, vendor, product, serial); fprintf(stderr, " %d: %s, %s, SN: %s\n", i, vendor, product, serial); } fprintf(stderr, "\n"); fprintf(stderr, "Using device %d: %s\n", dev_index, rtlsdr_get_device_name(dev_index)); r = rtlsdr_open(&dev, dev_index); if (r < 0) { fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index); exit(1); } #ifndef _WIN32 sigact.sa_handler = sighandler; sigemptyset(&sigact.sa_mask); sigact.sa_flags = 0; sigaction(SIGINT, &sigact, NULL); sigaction(SIGTERM, &sigact, NULL); sigaction(SIGQUIT, &sigact, NULL); sigaction(SIGPIPE, &sigact, NULL); #else SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE ); #endif optimal_settings(&fm, 0, 0); build_fir(&fm); /* Set the tuner gain */ r = rtlsdr_set_tuner_gain(dev, gain); if (r < 0) fprintf(stderr, "WARNING: Failed to set tuner gain.\n"); else fprintf(stderr, "Tuner gain set to %0.2f dB.\n", gain/10.0); if(strcmp(filename, "-") == 0) { /* Write samples to stdout */ fm.file = stdout; } else { fm.file = fopen(filename, "wb"); if (!fm.file) { fprintf(stderr, "Failed to open %s\n", filename); goto out; } } /* Reset endpoint before we start reading from it (mandatory) */ r = rtlsdr_reset_buffer(dev); if (r < 0) fprintf(stderr, "WARNING: Failed to reset buffers.\n"); pthread_create(&demod_thread, NULL, demod_thread_fn, (void *)(&fm)); rtlsdr_read_async(dev, rtlsdr_callback, (void *)(&fm), DEFAULT_ASYNC_BUF_NUMBER, DEFAULT_BUF_LENGTH); if (do_exit) fprintf(stderr, "\nUser cancel, exiting...\n"); else fprintf(stderr, "\nLibrary error %d, exiting...\n", r); if (fm.file != stdout) fclose(fm.file); rtlsdr_close(dev); free (buffer); out: return r >= 0 ? r : -r; }